Pemanfaatan LiDAR dalam Pemantauan Perubahan Tutupan Lahan untuk Mitigasi Perubahan Iklim: Tinjauan Literatur Sistematis
DOI:
https://doi.org/10.59632/magnetic.v5i2.517Keywords:
LiDAR, Perubahan Tutupan Lahan, Perubahan Iklim, Point Cloud, BiomassaAbstract
Perubahan tutupan lahan merupakan faktor penting dalam studi perubahan iklim global, terutama dipicu oleh aktivitas antropogenik. Dalam dua dekade terakhir, teknologi Light Detection and Ranging (LiDAR) telah berkembang sebagai alat efektif untuk pemantauan spasial perubahan tutupan lahan dengan akurasi tinggi. Penelitian ini bertujuan memberikan tinjauan sistematis mengenai pemanfaatan teknologi laser pada LiDAR dalam konteks pemantauan perubahan tutupan lahan yang relevan dengan studi perubahan iklim. Pendekatan Systematic Literature Review (SLR) digunakan untuk mengidentifikasi tren penelitian, metode yang digunakan, serta kontribusi LiDAR dalam estimasi parameter lingkungan seperti biomassa, stok karbon, dan model elevasi digital. Tinjauan ini mencakup publikasi dari tahun 2015 hingga 2024. Hasil menunjukkan bahwa LiDAR memiliki keunggulan dalam penetrasi kanopi vegetasi dan estimasi biomassa dengan akurasi tinggi (90–95%). Selain itu, integrasi LiDAR dengan data multispektral dan kecerdasan buatan (AI) memperluas kemampuannya dalam pemantauan lingkungan. Temuan ini diperoleh dari analisis literatur yang mencakup berbagai konteks aplikasi, seperti program REDD+, mitigasi bencana, dan validasi laporan emisi karbon nasional, terutama di wilayah tropis seperti Amazon dan Kalimantan. Dengan demikian, LiDAR merupakan teknologi utama dalam pengamatan bumi yang memadukan dimensi spasial dan temporal, sehingga mampu memberikan data yang presisi dan kontinu untuk mendukung kajian perubahan iklim, dinamika tutupan lahan, dan isu-isu lingkungan lainnya secara berkelanjutan.
Downloads
References
[1] M. O. Dinka and D. D. Chaka, “Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia,” J. Water L. Dev., 2019, doi: 10.2478/jwld-2019-0038.
[2] T. A. Teo and H. M. Wu, “Analysis of land cover classification using multi-wavelength LiDAR system,” Appl. Sci., 2017, doi: 10.3390/app7070663.
[3] M. G. Munthali, J. O. Botai, N. Davis, and A. M. Adeola, “Multi-temporal analysis of land use and land cover change detection for dedza district of Malawi using geospatial techniques,” Int. J. Appl. Eng. Res., 2019.
[4] S. Ullah, K. Ahmad, R. U. Sajjad, A. M. Abbasi, A. Nazeer, and A. A. Tahir, “Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region,” J. Environ. Manage., 2019, doi: 10.1016/j.jenvman.2019.05.063.
[5] W. Y. Yan, A. Shaker, and N. El-Ashmawy, “Urban land cover classification using airborne LiDAR data: A review,” 2015. doi: 10.1016/j.rse.2014.11.001.
[6] R. H. Topaloğlu, G. A. Aksu, Y. A. G. Ghale, and E. Sertel, “High-resolution land use and land cover change analysis using GEOBIA and landscape metrics: A case of Istanbul, Turkey,” Geocarto Int., 2022, doi: 10.1080/10106049.2021.2012273.
[7] A. Tariq and H. Shu, “CA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data of Faisalabad, Pakistan,” Remote Sens., 2020, doi: 10.3390/rs12203402.
[8] M. Alemu, B. Warkineh, E. Lulekal, and Z. Asfaw, “Analysis of land use land cover change dynamics in Habru District, Amhara Region, Ethiopia,” Heliyon, vol. 10, no. 19, p. e38971, 2024, doi: 10.1016/j.heliyon.2024.e38971.
[9] M. Azari, L. Billa, and A. Chan, “Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor, Malaysia,” Ecol. Process., 2022, doi: 10.1186/s13717-021-00350-0.
[10] M. N. Favorskaya and L. C. Jain, “Overview of LiDAR technologies and equipment for land cover scanning,” in Intelligent Systems Reference Library, 2017. doi: 10.1007/978-3-319-52308-8_2.
[11] J. H. Churnside and J. A. Shaw, “Lidar remote sensing of the aquatic environment: invited,” Appl. Opt., 2020, doi: 10.1364/ao.59.000c92.
[12] J. Wang et al., “Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales,” Int. J. Extrem. Manuf., vol. 5, no. 1, 2023, doi: 10.1088/2631-7990/acb134.
[13] X. Wang, H. Pan, K. Guo, X. Yang, and S. Luo, “The evolution of LiDAR and its application in high precision measurement,” in IOP Conference Series: Earth and Environmental Science, 2020. doi: 10.1088/1755-1315/502/1/012008.
[14] S. Pan et al., “Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters,” ISPRS J. Photogramm. Remote Sens., 2020, doi: 10.1016/j.isprsjprs.2020.05.022.
[15] D. Hanto et al., “Time of Flight Lidar Employing Dual-Modulation Frequencies Switching for Optimizing Unambiguous Range Extension and High Resolution,” IEEE Trans. Instrum. Meas., 2023, doi: 10.1109/TIM.2023.3235450.
[16] M. Zhang et al., “Phase-Modulated Continuous-Wave Coherent Ranging Method and Anti-Interference Evaluation,” Appl. Sci., 2023, doi: 10.3390/app13095356.
[17] S. Affan Ahmed, M. Mohsin, and S. M. Zubair Ali, “Survey and technological analysis of laser and its defense applications,” 2021. doi: 10.1016/j.dt.2020.02.012.
[18] R. Vernimmen et al., “Creating a lowland and peatland landscape digital terrain model (DTM) from interpolated partial coverage LiDAR data for Central Kalimantan and East Sumatra, Indonesia,” Remote Sens., 2019, doi: 10.3390/rs11101152.
[19] L. Duncanson et al., “Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission,” Remote Sens. Environ., 2022, doi: 10.1016/j.rse.2021.112845.
[20] D. Zhao, L. Ji, and F. Yang, “Land Cover Classification Based on Airborne Lidar Point Cloud with Possibility Method and Multi-Classifier,” Sensors (Basel)., 2023, doi: 10.3390/s23218841.
[21] C. Doyle, S. Luzzadder-Beach, and T. Beach, “Advances in remote sensing of the early Anthropocene in tropical wetlands: From biplanes to lidar and machine learning,” Prog. Phys. Geogr., 2023, doi: 10.1177/03091333221134185.
[22] S. Debnath, M. Paul, and T. Debnath, “Applications of LiDAR in Agriculture and Future Research Directions,” 2023. doi: 10.3390/jimaging9030057.
[23] S. K. Choi, R. A. Ramirez, and T. H. Kwon, “Acquisition of high-resolution topographic information in forest environments using integrated UAV-LiDAR system: System development and field demonstration,” Heliyon, 2023, doi: 10.1016/j.heliyon.2023.e20225.
[24] M. K. Jindal, M. Mainuddin, S. Veerabuthiran, and A. K. Razdan, “Laser-Based Systems for Standoff Detection of CWA: A Short Review,” 2021. doi: 10.1109/JSEN.2020.3030672.














