Pemodelan Kasus Pneumonia Berat pada Balita di Kota Surabaya Menggunakan Zero-Inflated Negative Binomial
DOI:
https://doi.org/10.59632/leibniz.v6i01.730Keywords:
nol berlebih, overdispersi, pneumonia berat pada balita, Zero-Inflated Negative BinomialAbstract
Pneumonia berat pada balita merupakan salah satu permasalahan kesehatan masyarakat yang signifikan, khususnya di perkotaan seperti Surabaya, karena dapat meningkatkan risiko morbiditas dan mortalitas balita. Data jumlah kasus pneumonia berat pada balita di Kota Surabaya berbentuk data cacah yang menunjukkan adanya overdispersi serta proporsi nilai nol berlebih. Penelitian ini bertujuan untuk memodelkan jumlah kasus pneumonia berat pada balita di Kota Surabaya menggunakan model Zero-Inflated Negative Binomial (ZINB) serta mengidentifikasi faktor-faktor yang memengaruhinya. Analisis awal menggunakan regresi Poisson menunjukkan ketidaksesuaian asumsi akibat overdispersi dan nilai nol berlebih, sehingga pemodelan dilanjutkan menggunakan beberapa pendekatan termasuk regresi ZINB. Pemilihan model dilakukan berdasarkan nilai Akaike Information Criterion (AIC). Hasil analisis menunjukkan bahwa model ZINB memiliki nilai AIC paling rendah dan mampu mengakomodasi karakteristik data dengan baik. Pada model ZINB, variabel jumlah rumah tangga dengan akses air bersih terbukti berpengaruh signifikan pada komponen count maupun pada komponen logit. Selain itu, variabel dummy tahun 2023 juga berpengaruh signifikan pada komponen count, yang menunjukkan jumlah kasus pneumonia berat yang lebih rendah dibandingkan dengan tahun 2022. Hasil ini menunjukkan bahwa akses air bersih merupakan faktor lingkungan yang berperan penting dalam menurunkan jumlah kasus pneumonia berat pada balita di Kota Surabaya.
Downloads
References
Abu Bakar, N. S., Ab Hamid, J., Mohd Nor Sham, M. S. J., Sham, M. N., & Jailani, A. S. (2022). Count data models for outpatient health services utilisation. BMC Medical Research Methodology, 22(1). https://doi.org/10.1186/s12874-022-01733-3
Ahmad, M., Amin, K., Ali, A., & Ahmad, R. W. (2025). A Comparative Evaluation of Poisson, Negative Binomial, and Zero-Inflated Models for Count Data. Dialogue Social Science Review (DSSR). www.thedssr.com
Almulhim, F. A., Nagy, M., Hammad, A. T., Mansi, A. H., Mekiso, G. T., & El-Raouf, M. M. A. (2025). New two parameter hybrid estimator for zero inflated negative binomial regression models. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-06116-4
AMALIANA, L., SA’ADAH, U., & WARDHANI, N. W. S. (2018). PERFORMA PROPORSI ZERO-INFLATION PADA REGRESI ZERO-INFLATED NEGATIVE BINOMIAL (STUDI KASUS: DATA TETANUS NEONATORUM DI JAWA TIMUR). E-Jurnal Matematika, 7(1), 41. https://doi.org/10.24843/mtk.2018.v07.i01.p183
Ananda, I. P., & Budyanra. (2024). Determinants of Pneumonia Status in Under-Five Children in Indonesia.
Ashraf, S., Islam, M., Unicomb, L., Rahman, M., Winch, P. J., Arnold, B. F., Benjamin-Chung, J., Ram, P. K., Colford, J. M., & Luby, S. P. (2020). Effect of improved water quality, sanitation, hygiene and nutrition interventions on respiratory illness in young children in Rural Bangladesh: A multi-arm cluster-randomized controlled trial. American Journal of Tropical Medicine and Hygiene, 102(5), 1124–1130. https://doi.org/10.4269/AJTMH.19-0769
Astuti, C. C., Puka, A. O. B., & Wiguna, A. (2023). ZERO-INFLATED NEGATIVE BINOMIAL MODELING IN INFANT DEATH CASE DUE TO PNEUMONIA IN EAST JAVA PROVINCE. Barekeng, 17(4), 1835–1844. https://doi.org/10.30598/barekengvol17iss4pp1835-1844
Ayuk, & Adaeze C. (2025). Complications and long-term impact of early life pneumonia. In Pediatric Pulmonology (Vol. 60, Issue S1, pp. S51–S53). John Wiley and Sons Inc. https://doi.org/10.1002/ppul.27299
Cauchemez, S., Hoze, N., Cousien, A., Nikolay, B., & ten bosch, Q. (2019). How Modelling Can Enhance the Analysis of Imperfect Epidemic Data. In Trends in Parasitology (Vol. 35, Issue 5, pp. 369–379). Elsevier Ltd. https://doi.org/10.1016/j.pt.2019.01.009
Dinas Kesehatan Kota Surabaya. (2024). Profil Kesehatan Kota Surabaya Tahun 2022–2024.
Feng, C. (2020). Zero-inflated models for adjusting varying exposures: a cautionary note on the pitfalls of using offset. Journal of Applied Statistics, 49(1), 1–23. https://doi.org/10.1080/02664763.2020.1796943
Hu, M. C., Pavlicova, M., & Nunes, E. V. (2011). Zero-inflated and hurdle models of count data with extra zeros: Examples from an HIV-risk reduction intervention trial. American Journal of Drug and Alcohol Abuse, 37(5), 367–375. https://doi.org/10.3109/00952990.2011.597280
Jhwueng, D. C., & Wu, C. Y. (2023). A Novel Phylogenetic Negative Binomial Regression Model for Count-Dependent Variables. Biology, 12(8). https://doi.org/10.3390/biology12081148
Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/kja.19087
Kyriazos, T., & Poga, M. (2023). Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Open Journal of Statistics, 13(03), 404–424. https://doi.org/10.4236/ojs.2023.133020
Lee, J. H., Han, G., Fulp, W. J., & Giuliano, A. R. (2012). Analysis of overdispersed count data: Application to the Human Papillomavirus Infection in Men (HIM) Study. Epidemiology and Infection, 140(6), 1087–1094. https://doi.org/10.1017/S095026881100166X
Lee, W., Kim, J., & Lee, D. (2023). Revisiting the analysis pipeline for overdispersed Poisson and binomial data. In Journal of Applied Statistics (Vol. 50, Issue 7, pp. 1455–1476). Taylor and Francis Ltd. https://doi.org/10.1080/02664763.2022.2026897
Maya Santi, V., & Wiyono, A. (2021). Pemodelan Jumlah Kasus Malaria di Indonesia Menggunakan Generalized Linear Model. Jurnal Statistika Dan Aplikasinya, 5(1).
Morales, F., Montserrat-de la Paz, S., Leon, M. J., & Rivero-Pino, F. (2024). Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children’s Health Status: A Literature Review. In Nutrients (Vol. 16, Issue 1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nu16010001
Schober, P., & Vetter, T. R. (2021). Statistical Minute ANESTHESIA & ANALGESIA Count Data in Medical Research: Poisson Regression and Negative Binomial Regression. www.anesthesia-analgesia.org
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Solomon, Y., Kofole, Z., Fantaye, T., & Ejigu, S. (2022). Prevalence of pneumonia and its determinant factors among under-five children in Gamo Zone, southern Ethiopia, 2021. Frontiers in Pediatrics, 10. https://doi.org/10.3389/fped.2022.1017386
Suchery, P. L., & Hastono, S. P. (2025). Spatial Analysis of Pneumonia Distribution in Children Under Five in West Java: Relationships with Individual and Environmental Determinants. . Jurnal Ilmu Kesehatan Masyarakat.
Wahyu Salsabila, S., Efendi, A., & Nurjannah. (2025). Zero Inflated Negative Binomial (ZINB) Regression: Application to the Pneumonia Study and Simulation under Several Scenarios. CAUCHY - Jurnal Matematika Murni Dan Aplikasi, 10(1), 457–468. https://doi.org/10.18860/ca.v10i1.32499
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Deswita Nada Fitriani, A’yunin Sofro

This work is licensed under a Creative Commons Attribution 4.0 International License.













