Comparison of Geographically Weighted Regression with Adaptive Gaussian and Bisquare Kernel on Open Unemployment Rate in Riau Islands
DOI:
https://doi.org/10.59632/leibniz.v6i01.705Keywords:
Open Unemployment Rate, GWR, Multiple Linear Regression, Spatial Weighting MatrixAbstract
Regression analysis is an analysis to determine the relationship and influence of independent variables on the dependent variable. If the data has a spatial relationship, this analysis has the potential to produce a less accurate model because the regression analysis ignores the influence of the location. One of the data indicated to have a spatial relationship is the open unemployment rate. One spatial analysis that can be used to accommodate spatial relationships is the Geographically Weighted Regression (GWR) model. In the GWR model, a spatial weighting matrix is required whose size depends on the proximity between locations. In this study, two spatial weighting matrix were used: Adaptive Gaussian Kernel and Adaptive Bisquare Kernel. Based on the results of the analysis, it is known that the factors influencing the open unemployment rate in the Riau Islands in 2024 at several locations are the human development index, Economic Growth, and Minimum Wages by Regency/City. Based on the R2 value and AIC value, the best spatial weight matrix produced is the Adaptive Bisquare Kernel weighting function with an R2 value of 93.32% and an AIC value of 15.2835.
Downloads
References
Amalia, Eka, and Liza Kurnia Sari. 2019. “Analisis Spasial Untuk Mengidentifikasi Tingkat Pengangguran Terbuka Berdasarkan Kabupaten/Kota Di Pulau Jawa Tahun 2017.” Indonesian Journal of Statistics and Its Applications 3(3):202–15. doi: 10.29244/ijsa.v3i3.240.
BPS. 2020. Keadaan Pekerja Di Indonesia Agustus 2020. Badan Pusat Statistik.
Comber, Alexis, Chris Brunsdon, Martin Charlton, Guanpeng Dong, Rich Harris, Binbin Lu, Yihe Lü, Daisuke Murakami, Tomoki Nakaya, Yunqiang Wang, and Paul Harris. 2020. “The GWR Route Map: A Guide to the Informed Application of Geographically Weighted Regression.” 1–34.
Comber, Alexis, Christopher Brunsdon, Martin Charlton, Guanpeng Dong, Richard Harris, Binbin Lu, Yihe Lü, Daisuke Murakami, Tomoki Nakaya, Yunqiang Wang, and Paul Harris. 2022. “A Route Map for Successful Applications of Geographically Weighted Regression.” 1–24. doi: 10.1111/gean.12316.
Fotheringham, A. Stewart, Wenbai Yang, and Wei Kang. 2017. Multiscale Geographically Weighted Regression (MGWR). Vol. 107.
Kartini, Alif Yuanita. 2019. “Analisis Geographically Weighted Regression Dengan Pembobot Kernel Bi-Square Untuk Angka Pengangguran Abstrak Pengangguran Merupakan Masalah Ekonomi Yang Selalu Terjadi Dalam Suatu Negara , Pekerjaan Yang Tersedia . Jumlah Pengangguran Untuk Menganalisa P.” Journal of Mathematics Education and Science (JaMES) 2(1):51–59. doi: https://doi.org/10.32665/james.v2i1.75.
Krismayanto, Ujang Kurnia, Nurzikri Saputra, and Syaikhul Ibad. 2023. “Pemodelan Geographically Weighted Regression ( GWR ) Dengan Fungsi Pembobot Adaptive Gaussian Terhadap Indeks Pembangunan Gender ( IPG ) Di Indonesia Tahun 2021 ( Geographically Weighted Regression ( GWR ) Modeling With Adaptive Gaussian Weighting Function On Gender Development Index ( IPG ) In Indonesia In 2021 ) Dituangkan Menjadi Salah Satu Tujuan Pembangunan SDGs . Tujuan 5 Dari SDGs Ialah.” 05(01):1–15.
Kuncoro, M. 2018. Ekonomika Pembangunan: Teori, Masalah, Dan Kebijakan. UPP STIM YKPN.
Mahroji, Dwi, and Iin Nurkhasanah. 2019. “Pengaruh Indeks Pembangunan Manusia Terhadap Tingkat Pengangguran Di Provinsi Banten.” Jurnal Ekonomi-Qu 9(1). doi: 10.35448/jequ.v9i1.5436.
Munikah, Tutuk, Henny Pramoedyo, and Rahma Fitriani. 2014. “Pemodelan Geographically Weighted Regression Dengan Pembobot Fixed Gaussian Kernel Pada Data Spasial (Studi Kasus Ketahanan Pangan Di Kabupaten Tanah Laut Kalimantan Selatan).” Natural B 2(3):296–302.
Ningtyas, Dessy Shintya Dwi Ningtyas. 2019. “Pemodelan Geographically Weighted Regression (GWR) Dengan Fungsi Pembobot Adaptive Gaussian Kernel, Adaptive Bisquare Kernel Dan Adaptive Tricube Kernel.” Brawijaya.
Putra, Robiansyah, Sischa Wahyuning Tyas, and Muhammad Ghani Fadhlurrahman. 2022. “Geographically Weighted Regression with The Best Kernel Function on Open Unemployment Rate Data in East Java Province.” Enthusiastic : International Journal of Applied Statistics and Data Science 2(1):26–36. doi: 10.20885/enthusiastic.vol2.iss1.art4.
Ramadayani, Mila Rizki, Fariani Hermin Indiyah, and Ibnu Hadi. 2022. “Pemodelan Geographically Weighted Regression Menggunakan Pembobot Kernel Fixed Dan Adaptive Pada Kasus Tingkat Pengangguran Terbuka Di Indonesia.” 4(5):51–62.
Riau, BPS Kepulauan. 2019. Provinsi Kepulauan Riau Dalam Angka.
Runadi, T., Y. Widyaningsih, and D. Lestari. 2020. “Modeling Total Crime and the Affecting Factors in Central Java Using Geographically Weighted Regression.” Journal of Physics: Conference Series 1442(1). doi: 10.1088/1742-6596/1442/1/012026.
Safitri, Ulfie, and Luthfatul Amaliana. 2021. “Model Geographically Weighted Regression Dengan Fungsi Pembobot Adaptive Dan Fixed Kernel Pada Kasus Kematian Ibu Di Jawa Timur.” 5(2):208–20.
Sartika, Euis, and Anny Suryani. 2020. “Comparison of Geographically Weighted Regression Analysis and Global Regression on Modeling the Unemployment Rate in West Java.” 198(Issat):472–78. doi: 10.2991/aer.k.201221.078.
Shahneh, Mohammad Reza, Samet Oymak, and Amr Magdy. 2021. “A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically Weighted Regression.” GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems 564–75. doi: 10.1145/3474717.3484260.
Sukirno, S. 2019. Makroekonomi Teori Pengantar. Raja Grafindo Persada.
Sulekan, Ayuna, and Shariffah Suhaila Syed Jamaludin. 2020. “Review on Geographically Weighted Regression (Gwr) Approach in Spatial Analysis.” Malaysian Journal of Fundamental and Applied Sciences 16(2):173–77. doi: 10.11113/mjfas.v16n2.1387.
Tangka, Frangly Elviano, Djoni Hatidja, Winsy Christo, and Deilan Weku. 2024. “Pemodelan Geographically Weighted Regression Dengan Pembobot Adaptive Gaussian Kernel Pada PDRB Di Indonesia Geographically Weighted Regression Modeling with Adaptive Gaussian Kernel Weighting on GRDP in Indonesia.” 24(April):110–19.
Todaro, M. & Smith, S. 2020. Economic Development. Pearson International.
Wheeler, David C. 2021. Geographically Weighted Regression. P. (eds) H. Berlin, Heidelberg: Springer Berlin Heidelberg.
Wu, Decun. 2020. “Spatially and Temporally Varying Relationships between Ecological Footprint and Influencing Factors in China’s Provinces Using Geographically Weighted Regression (GWR).” Journal of Cleaner Production 261:121089. doi: 10.1016/j.jclepro.2020.121089.
Yu, Hanchen, Alexander Stewart Fotheringham, Ziqi Li, Taylor Oshan, Wei Kang, and Levi John Wolf. 2019. “Inference in Multiscale Geographically Weighted Regression.” (December 2018):1–20. doi: 10.1111/gean.12189.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Widya Reza, Febrya Christin Handayani Buan, Puce Angreni

This work is licensed under a Creative Commons Attribution 4.0 International License.













