Pemodelan Matematis Isoterm dan Kinetika Adsorpsi Ion Cr(VI) pada Limbah Elektroplating Menggunakan Adsorben Tempurung Kelapa
DOI:
https://doi.org/10.59632/leibniz.v3i1.608Keywords:
Adsorpsi, Cr(VI), Tempurung Kelapa, Isoterm Langmuir, Limbah Elektroplating, Karbon AktifAbstract
Peningkatan jumlah industri di Indonesia berkontribusi terhadap pertumbuhan ekonomi nasional, namun juga menimbulkan ancaman serius terhadap lingkungan akibat pencemaran air dan tanah oleh limbah organik maupun anorganik. Industri elektroplating merupakan salah satu sumber utama limbah berbahaya, khususnya yang mengandung ion logam berat kromium heksavalen (Cr(VI)) seperti kromat, dikromat, dan bikromat, yang tergolong limbah Bahan Berbahaya dan Beracun (B3). Salah satu metode yang dinilai efektif dan ekonomis untuk mengatasi pencemaran ini adalah proses adsorpsi menggunakan karbon aktif. Dalam penelitian ini, digunakan karbon aktif berbahan dasar tempurung kelapa untuk mengadsorpsi ion Cr(VI) dari limbah elektroplating. Efektivitas adsorpsi dikaji melalui pendekatan model isoterm Langmuir, Freundlich, dan Temkin, serta analisis kinetika adsorpsi. Hasil penelitian menunjukkan bahwa proses adsorpsi mengikuti model isoterm Langmuir dengan koefisien determinasi (R²) tertinggi sebesar 0,954, yang mengindikasikan terjadinya adsorpsi monolayer pada permukaan adsorben yang homogen. Dengan demikian, karbon aktif dari tempurung kelapa memiliki potensi besar sebagai adsorben alami yang efisien dan ramah lingkungan untuk penanganan limbah logam berat Cr(VI).Downloads
References
Bharagava, R. N., & Mishra, S. (2018). Ecotoxicology and Environmental Safety Hexavalent chromium reduction potential of Cellulosimicrobium sp . isolated from common e ffl uent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 147(May 2017), 102–109. https://doi.org/10.1016/j.ecoenv.2017.08.040
Costa, M. Da. (2019). Studi Penurunan Kadar Logam Kromium (Cr) dalam Limbah Buatan Elektroplating Menggunakan Metode Presipitasi dan Adsorpsi. Tesis, 4, 47--57.
Dwivedi, S. K. (2023). Hexavalent chromium ( Cr + 6 ) detoxification potential and stress response of fungus Talaromyces pinophillus isolated from tannery wastewater. 13(September).
Guo, T., Zhang, Y., Chen, J., & Liu, W. (2024). Case Studies in Thermal Engineering Investigation of CO 2 adsorption on nitrogen-doped activated carbon based on porous structure and surface acid-base sites. Case Studies in Thermal Engineering, 53(December 2023), 103925. https://doi.org/10.1016/j.csite.2023.103925
Leonard, J., Sivalingam, S., Venkata, R., & Mishra, S. (2023). Environmental Chemistry and Ecotoxicology Ef fi cient removal of hexavalent chromium ions from simulated wastewater by functionalized anion exchange resin : Process optimization , isotherm and kinetic studies. Environmental Chemistry and Ecotoxicology, 5(December 2022), 98–107. https://doi.org/10.1016/j.enceco.2023.03.001
Mulyadi, F., Pratama, Y., Apriyanti, L., Lingkungan, J. T., & Teknik, F. (2020). Penyisihan Kandungan Kromium Hexavalen ( Cr 6 + ) pada Limbah Hasil Analisis COD dengan Metoda Presipitasi oleh NaoH dan Ca ( OH ) 2. 4, 9–13.
Naat, J. N. (2022). Adsorpsi Ion Pb ( II ) Menggunakan Silika Berbasis Pasir Alam [ Ion Pb ( II ) Adsorption Using Silica from Natural Sand of Takari-NTT ]. 8(3), 266–279.
Namasivayam, C. (1993). WASTE Fe ( III )/ Cr ( III ) H Y D R O X I D E As A D S O R B E N T For The Removal Of Cr ( Vi ) From Aqueous Solution A N D C H R O M I U M Plating I N D U S T R Y Wastewater *. 82, 255–261.
Priastomo, Y., & Rohma, H. (2020). Journal of Environmental Chemical Engineering Simultaneous removal of lead ( II ), chromium ( III ), and copper ( II ) heavy metal ions through an adsorption process using C -phenylcalix [ 4 ] pyrogallolarene material. Journal of Environmental Chemical Engineering, 8(4), 103971. https://doi.org/10.1016/j.jece.2020.103971
Rai, R., Lochan, R., Paudyal, H., Kumar, S., Nath, K., Raj, M., & Raj, B. (2023). Heliyon Acid-treated pomegranate peel ; An efficient biosorbent for the excision of hexavalent chromium from wastewater. Heliyon, 9(5), e15698. https://doi.org/10.1016/j.heliyon.2023.e15698
Sun, J., Li, M., Zhang, Z., & Guo, J. (2019). Applied Surface Science Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon. Applied Surface Science, 471(December 2018), 615–620. https://doi.org/10.1016/j.apsusc.2018.12.050
Wahyulis, N. C., Ulfin, I., Kunci, K., Fe, E., Kulit, I. P., & Pendahuluan, I. (2014). Optimasi Tegangan pada Proses Elektrokoagulasi Penurunan Kadar Kromium dari Filtrat Hasil Hidrolisis Limbah Padat Penyamakan Kulit.3(2), 9–11.
Wang, H., Wang, S., Chen, Z., Zhou, X., Wang, J., & Chen, Z. (2020). Bioresource Technology Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and e ffi ciently capture Pb 2 + and CrO 42 − from electroplating wastewater. Bioresource Technology, 306(March), 123118. https://doi.org/10.1016/j.biortech.2020.123118
Zhu, Y., & Kolar, P. (2014). Journal of Environmental Chemical Engineering Adsorptive removal of p -cresol using coconut shell-activated char. Biochemical Pharmacology, 2(4), 2050–2058. https://doi.org/10.1016/j.jece.2014.08.022
Zhu, Y., & Kolar, P. (2016). activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 0, 1–9. https://doi.org/10.1016/j.jtice.2016.07.044
Zulfi, F., Dahlan, K., & Sugita, P. (n.d.). KARAKTERISTIK FLUKS MEMBRAN DALAM PROSES. 10(1), 19–29.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Madalena Da Costa, Oktavina G. LP Manulangga, Martinho Dos Santos Martins

This work is licensed under a Creative Commons Attribution 4.0 International License.













