Implementasi Algoritma Sherman-Morrison untuk Penyelesaian Sistem Persamaan Linier Menggunakan Matlab
DOI:
https://doi.org/10.59632/leibniz.v5i02.556Keywords:
MATLAB, Sherman-Morrison, Sistem Persamaan LinierAbstract
Artikel ini membahas implementasi algoritma Sherman-Morrison untuk menyelesaikan sistem persamaan linier, di mana A merupakan matriks nonsingular berukuran n×n sehingga sistem memiliki solusi tunggal. Penelitian ini dilatarbelakangi oleh kebutuhan pendekatan penyelesaian yang adaptif dan efisien bagi sistem linier yang mengalami perubahan lokal secara berulang. Algoritma Sherman-Morrison merupakan bentuk khusus dari rumus Sherman–Morrison–Woodbury yang berlaku untuk modifikasi rank-satu, sehingga memungkinkan pembaruan invers matriks tanpa perhitungan ulang secara menyeluruh. Kajian dilakukan melalui pembuktian teoritis rumus tersebut dan implementasi komputasional menggunakan MATLAB R2013a. Implementasi disusun sebagai fungsi khusus yang dikembangkan secara modular untuk mengeksekusi langkah-langkah algoritma. Pengujian dilakukan terhadap empat jenis matriks: acak penuh, simetris positif definit, jarang (sparse), dan hampir singular. Evaluasi mencakup akurasi solusi, error residual, serta waktu eksekusi, kemudian dibandingkan dengan metode standar (A\b). Hasil implementasi menunjukkan bahwa algoritma memberikan solusi yang akurat dan efisien pada sistem dengan skala kecil serta matriks sparse, namun cenderung tidak stabil bila diterapkan pada matriks yang hampir singular. Dengan demikian, algoritma ini layak digunakan untuk kasus pembaruan rank-satu dengan kondisi yang baik, serta relevan untuk penerapan dalam konteks pembelajaran dan komputasi numerik.
Downloads
References
Anton, H., & Rorres, C. (2014). Elementary Linear Algebra: Applications version (11th ed.). Wiley.
Aoulad, O. F., & Tajani, C. (2023). A new algorithm for solving Toeplitz linear systems. Mathematical Modeling and Computing, 10(3), 807-815.
Arias, M. L., Corach, G., & Maestripieri, A. (2015). Range additivity, shorted operator and the Sherman-Morrison-Woodbury formula. Linear Algebra and Its Applications, 467, 86-99.
Cahyono, B. (2016). PENGGUNAAN SOFTWARE MATRIX LABORATORY (MATLAB) DALAM PEMBELAJARAN ALJABAR LINIER. Phenomenon : Jurnal Pendidikan MIPA, 3(1), 45-62.
Chai, P., Zhang, J., He, R., Lin, W., & Shu, X. (2021). Application of Sherman-Morrison formula in adaptive analysis by BEM. Engineering Analysis with Boundary Elements, 128, 244-256.
Chen, J., Liu, Y., Zhang, W., Liu, Y., Wang, D., & Sun, L. (2021). Reformulation of frequency based substructuring method considering elastic joints according to sherman-morrison-woodbury formula. Tehnicki Vjesnik, 28(6), 1983-1988.
Chen, X., Zhang, L., Gu, C., & Li, Z. (2023). Wideband Sherman-Morrison-Woodbury Formula-Based Algorithm for Electromagnetic Scattering Problems. IEEE Transactions on Antennas and Propagation, 71(6), 1-2.
Egidi, N., & Maponi, P. (2006). A Sherman-Morrison approach to the solution of linear systems. Journal of Computational and Applied Mathematics, 189, 703–718.
Hager, W. W. (1989). Updating the Inverse of a Matrix. Journal Society for Industrial and Applied Mathematics, 31(2), 221–239.
Hao, Y., & Simoncini, V. (2021). The Sherman–Morrison–Woodbury formula for generalized linear matrix equations and applications. Numerical Linear Algebra with Applications, 28(5), 1-25.
Irwan, M. (2017). Pengantar Matlab Untuk Sistem Persamaan Linear. Jurnal Sains Matematika Dan Statistika, 6(1), 30.
Keviczky, L., Bars, R., Hetthéssy, J., & Bányász, C. (2019). Introduction to MATLAB. In Advanced Textbooks in Control and Signal Processing, 1-27.
Li, T., Mosić, D., & Chen, J. (2022). The Sherman-Morrison-Woodbury Formula for the Generalized Inverses. Filomat, 36(15), 5307-5313.
Maponi, P. (2007). The solution of linear systems by using the Sherman-Morrison formula. Linear Algebra and Its Applications, 420, 276–294.
Nino Ruiz, E. D., Sandu, A., & Anderson, J. (2015). An efficient implementation of the ensemble Kalman filter based on an iterative Sherman–Morrison formula. Statistics and Computing, 25(3), 561-577.
Sahid. (2005). Pengantar Komputasi Numerik dengan MATLAB. Andi Offset: Yogyakarta.
Sherman, J., & Morrison, W. J. (1950). Adjusment of an Inverse Matrix Cor responding to a Change in One Element of a Given Matrix. The Annals of Mathematical Statistics, 21(1), 124–127.
Shi, J., Li, K., Chai, L., Liang, L., Tian, C., & Xu, K. (2023). Fast satellite selection algorithm for GNSS multi-system based on Sherman–Morrison formula. GPS Solutions, 27(1), 1-9.
Smejkal, T., & Mikyška, J. (2021). Efficient solution of linear systems arising in the linearization of the VTN-phase stability problem using the Sherman-Morrison iterations. Fluid Phase Equilibria, 527, 112832.
Song, Q., Liu, Z., Wan, Y., Ju, G., & Shi, J. (2015). Application of Sherman-Morrison-Woodbury formulas in instantaneous dynamic of peripheral milling for thin-walled component. International Journal of Mechanical Sciences, 96-97, 79-90.
Stanimirović, P. S., Katsikis, V. N., & Pappas, D. (2016). Computing {2,4} and {2,3}-inverses by using the Sherman-Morrison formula. Applied Mathematics and Computation, 273, 584-603.
Tomozei, I. ., Axinte, T., & Paraschiv, L. (2023). A brief introduction to the Matlab program. Technium: Romanian Journal of Applied Sciences and Technology, 9, 54-59.
Wu, F. (2016). Sherman-Morrison-Woodbury Formula for Linear Integrodifferential Equations. Mathematical Problems in Engineering, 2016(1), 1-6.
Wu, Y., Zhu, R., Cao, Z., Liu, Y., & Jiang, D. (2020). Model updating using frequency response functions based on sherman-morrison formula. Applied Sciences (Switzerland), 10(14), 4985.
Xu, X. (2017). Generalization of the Sherman–Morrison–Woodbury formula involving the Schur complement. Applied Mathematics and Computation, 309, 183-191.
Zulhendri. (2016). Pembelajaran Aljabar Linear Berbantuan Matlab Program Studi Pendidikan Matematika. Jurnal Cendekia: Jurnal Pendidikan Matematika, 00(2), 55-64.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nurul Hidayah, Bella Arisha

This work is licensed under a Creative Commons Attribution 4.0 International License.













