Karakterisasi Pusat Gelanggang Polinom Miring Atas Matriks Riil 3x3

Authors

  • Jeriko Gormantara Universitas Hasanuddin

DOI:

https://doi.org/10.59632/leibniz.v5i02.500

Keywords:

Gelanggang Polinom Miring, Pusat, Endomorfisma, Gelanggang Matriks

Abstract

Pusat dari gelanggang polinom miring berperan penting dalam memahami sifat simetri dan komutativitas dalam struktur aljabar nonkomutatif. Konsep ini memiliki relevansi dalam pengembangan teori modul dan aplikasi seperti pengkodean dan kriptografi. Dalam penelitian ini, dikarakterisasi pusat dari gelanggang polinom miring atas gelanggang matriks riil 3×3. Hasil ini diperoleh dengan membangun sebuah endomorfisma pada gelanggang matriks riil 3×3, yang kemudian digunakan untuk mengkonstruksi gelanggang polinom miring. Hasil utama menunjukkan bahwa pusat gelanggang tersebut terdiri tepat dari polinomial-polinomial berderajat genap dengan koefisien berupa matriks skalar riil. Struktur ini muncul dari syarat bahwa elemen pusat harus komutatif terhadap operasi dalam gelanggang R dan terhadap x. Pembuktian dilakukan menggunakan argumen inklusi ganda.

Downloads

Download data is not yet available.

References

Amir, A. K. (2019). Around zero-divisor graph of skew polynomial rings over real matrix 2 by 2. Journal of Physics: Conference Series, 1341(6). https://doi.org/10.1088/1742-6596/1341/6/062022

Amir, A. K., Erawaty, N., & Sosang, R. R. W. (2024). CENTER OF THE SKEW POLYNOMIAL RING OF FINITE SEQUENCES OF REAL NUMBERS. Far East Journal of Mathematical Sciences (FJMS), 141(3), 169–186. https://doi.org/10.17654/0972087124011

Amir, A. K., Fadhilah, N., & Abdal, A. M. (2023). Center of the skew polynomial ring over coquaternion diagonal matrix. AIP Conference Proceedings, 2738(1), 20002. https://doi.org/10.1063/5.0144727

Ánh, P. N. (2022). Skew Polynomial Rings: the Schreier Technique. Acta Mathematica Vietnamica, 47(1), 5–17. https://doi.org/10.1007/s40306-021-00466-7

Bennenni, N., Benbelkacem, N., Aydin, N., & Liu, P. (2024). Mixed skew cyclic codes over rings. Journal of Algebra Combinatorics Discrete Structures and Applications, 12(1), 19–29. https://doi.org/10.13069/jacodesmath.v12i1.339

Chan, K., Gaddis, J., Won, R., & Zhang, J. J. (2023). Ozone Groups and Centers of Skew Polynomial Rings. International Mathematics Research Notices, 2024(7), 5689–5727. https://doi.org/10.1093/imrn/rnad235

Chapman, A., & Paran, E. (2024). Fixed points and orbits in skew polynomial rings. Journal of Algebra and Its Applications, 23(08), 2450078. https://doi.org/10.1142/S0219498824500786

Dertli, A., & Cengellenmis, Y. (2025). Skew codes over the split quaternions. Malaya Journal of Matematik, 13(01), 1–7. https://doi.org/10.26637/mjm1301/001

El Badry, M., Haily, A., & Mounir, A. (2025). On LCD skew group codes. Designs, Codes and Cryptography. https://doi.org/10.1007/s10623-024-01561-0

Habibi, M., & Paykan, K. (2025). ON SKEW GENERALIZED TRIANGULAR MATRIX RINGS. Journal of Algebraic Systems, 13(1), 151–162. https://doi.org/10.22044/jas.2023.12285.1654

Lobillo, F. J., & Muñoz, J. M. (2025). Linear complementary pairs of skew constacyclic codes. Designs, Codes, and Cryptography. https://doi.org/10.1007/s10623-025-01568-1

Nguefack, B. (2023). THE STRUCTURE OF MATRIX POLYNOMIAL ALGEBRAS. International Electronic Journal of Algebra, 33(33), 137–177. https://doi.org/10.24330/ieja.1151001

Pathak, S., Raj, R., & Maity, D. (2025). Skew negacyclic codes of length $$4p^s$$over $$mathbb {F}_{p^m} + umathbb {F}_{p^m}$$. Cryptography and Communications. https://doi.org/10.1007/s12095-025-00779-6

Paykanian, M., Hashemi, E., & Alhevaz, A. (2021). On skew polynomials over Ikeda-Nakayama rings. Communications in Algebra, 49(9), 4038–4049. https://doi.org/10.1080/00927872.2021.1912064

Shahoseini, E., Dastbasteh, R., Dinh, H. Q., & Mousavi, H. (2024). On the structure of ideals in a family of skew polynomial rings. Journal of Algebra and Its Applications, 23(08), 2450174. https://doi.org/10.1142/S0219498824501743

Werner, N. J. (2021). Integer-valued skew polynomials. Journal of Algebra and Its Applications, 20(07), 2150114. https://doi.org/10.1142/S0219498821501140

Published

2025-07-03

How to Cite

Karakterisasi Pusat Gelanggang Polinom Miring Atas Matriks Riil 3x3. (2025). Leibniz: Jurnal Matematika, 5(02), 11-20. https://doi.org/10.59632/leibniz.v5i02.500