Karakterisasi Pusat Gelanggang Polinom Miring Atas Matriks Riil 3x3
DOI:
https://doi.org/10.59632/leibniz.v5i02.500Keywords:
Gelanggang Polinom Miring, Pusat, Endomorfisma, Gelanggang MatriksAbstract
Pusat dari gelanggang polinom miring berperan penting dalam memahami sifat simetri dan komutativitas dalam struktur aljabar nonkomutatif. Konsep ini memiliki relevansi dalam pengembangan teori modul dan aplikasi seperti pengkodean dan kriptografi. Dalam penelitian ini, dikarakterisasi pusat dari gelanggang polinom miring atas gelanggang matriks riil 3×3. Hasil ini diperoleh dengan membangun sebuah endomorfisma pada gelanggang matriks riil 3×3, yang kemudian digunakan untuk mengkonstruksi gelanggang polinom miring. Hasil utama menunjukkan bahwa pusat gelanggang tersebut terdiri tepat dari polinomial-polinomial berderajat genap dengan koefisien berupa matriks skalar riil. Struktur ini muncul dari syarat bahwa elemen pusat harus komutatif terhadap operasi dalam gelanggang R dan terhadap x. Pembuktian dilakukan menggunakan argumen inklusi ganda.
Downloads
References
Amir, A. K. (2019). Around zero-divisor graph of skew polynomial rings over real matrix 2 by 2. Journal of Physics: Conference Series, 1341(6). https://doi.org/10.1088/1742-6596/1341/6/062022
Amir, A. K., Erawaty, N., & Sosang, R. R. W. (2024). CENTER OF THE SKEW POLYNOMIAL RING OF FINITE SEQUENCES OF REAL NUMBERS. Far East Journal of Mathematical Sciences (FJMS), 141(3), 169–186. https://doi.org/10.17654/0972087124011
Amir, A. K., Fadhilah, N., & Abdal, A. M. (2023). Center of the skew polynomial ring over coquaternion diagonal matrix. AIP Conference Proceedings, 2738(1), 20002. https://doi.org/10.1063/5.0144727
Ánh, P. N. (2022). Skew Polynomial Rings: the Schreier Technique. Acta Mathematica Vietnamica, 47(1), 5–17. https://doi.org/10.1007/s40306-021-00466-7
Bennenni, N., Benbelkacem, N., Aydin, N., & Liu, P. (2024). Mixed skew cyclic codes over rings. Journal of Algebra Combinatorics Discrete Structures and Applications, 12(1), 19–29. https://doi.org/10.13069/jacodesmath.v12i1.339
Chan, K., Gaddis, J., Won, R., & Zhang, J. J. (2023). Ozone Groups and Centers of Skew Polynomial Rings. International Mathematics Research Notices, 2024(7), 5689–5727. https://doi.org/10.1093/imrn/rnad235
Chapman, A., & Paran, E. (2024). Fixed points and orbits in skew polynomial rings. Journal of Algebra and Its Applications, 23(08), 2450078. https://doi.org/10.1142/S0219498824500786
Dertli, A., & Cengellenmis, Y. (2025). Skew codes over the split quaternions. Malaya Journal of Matematik, 13(01), 1–7. https://doi.org/10.26637/mjm1301/001
El Badry, M., Haily, A., & Mounir, A. (2025). On LCD skew group codes. Designs, Codes and Cryptography. https://doi.org/10.1007/s10623-024-01561-0
Habibi, M., & Paykan, K. (2025). ON SKEW GENERALIZED TRIANGULAR MATRIX RINGS. Journal of Algebraic Systems, 13(1), 151–162. https://doi.org/10.22044/jas.2023.12285.1654
Lobillo, F. J., & Muñoz, J. M. (2025). Linear complementary pairs of skew constacyclic codes. Designs, Codes, and Cryptography. https://doi.org/10.1007/s10623-025-01568-1
Nguefack, B. (2023). THE STRUCTURE OF MATRIX POLYNOMIAL ALGEBRAS. International Electronic Journal of Algebra, 33(33), 137–177. https://doi.org/10.24330/ieja.1151001
Pathak, S., Raj, R., & Maity, D. (2025). Skew negacyclic codes of length $$4p^s$$over $$mathbb {F}_{p^m} + umathbb {F}_{p^m}$$. Cryptography and Communications. https://doi.org/10.1007/s12095-025-00779-6
Paykanian, M., Hashemi, E., & Alhevaz, A. (2021). On skew polynomials over Ikeda-Nakayama rings. Communications in Algebra, 49(9), 4038–4049. https://doi.org/10.1080/00927872.2021.1912064
Shahoseini, E., Dastbasteh, R., Dinh, H. Q., & Mousavi, H. (2024). On the structure of ideals in a family of skew polynomial rings. Journal of Algebra and Its Applications, 23(08), 2450174. https://doi.org/10.1142/S0219498824501743
Werner, N. J. (2021). Integer-valued skew polynomials. Journal of Algebra and Its Applications, 20(07), 2150114. https://doi.org/10.1142/S0219498821501140
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jeriko Gormantara

This work is licensed under a Creative Commons Attribution 4.0 International License.













