Formulasi Infinitesimal Generators Grup Lie Satu Parameter dari Transformasi Translasi dan Scaling

Authors

  • Edi Kurniadi Universitas Padjadjaran
  • Badrulfalah Badrulfalah Universitas Padjadjaran
  • Nurul Gusriani Universitas Padjadjaran

DOI:

https://doi.org/10.59632/leibniz.v5i02.496

Keywords:

Aksi, Grup Lie, Infinitesimal Generators, Scaling, Transformasi, Translasi

Abstract

Grup Lie transformasi dapat dikarakterisasi melalui infinitesimal generators yang membentuk aljabar Lie. Infinitesimal generators dapat diaplikasikan untuk menyelesaikan persamaan diferensial biasa (PDB) maupun persamaan diferensial parsial (PDP) baik yang linear maupun nonlinear. Tujuan penelitian ini adalah untuk memberikan rumus ekplisit infinitesimal generators berkenaan dengan transformasi grup Lie satu parameter. Metode penelitian yang digunakan merupakan kombinasi dari metode kualitiatif berupa studi literatur khususnya transformasi translasi dan scaling dan metode kuantitatif dengan menentukan rumus eksplisit infinitesimal generators dan analisisnya. Hasil yang diperoleh adalah bentuk rumus eksplisit infinitesimal generators yang bersesuaian dengan jenis transformasi yang digunakan. Hasil ini bisa digunakan untuk penelitian selanjutnya dalam menyelesaikan model matematika reaksi difusi konveksi (RDK) dalam PDB maupun PDP sebagai salah satu langkah dalam aplikasi simetri Lie.  

Downloads

Download data is not yet available.

References

Bildirici, M., Ucan, Y., & Lousada, S. (2022). Interest Rate Based on The Lie Group SO(3) in the Evidence of Chaos. Mathematics, 10(21), 3998. https://doi.org/10.3390/math10213998

Bluman, G. W. , & Cole, J. D. (1969). The general similarity solution of the heat equation. J. Math. Mech., 18(1), 1025–1042.

Bluman, G. W., & Kumei, S. (2002). Symmetry and Integration Methods for Differential Equations (Vol. 154). Springer New York. https://doi.org/10.1007/b97380

Bradshaw-Hajek, B. (2019). Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations. Symmetry, 11(2), 208. https://doi.org/10.3390/sym11020208

Broadbridge, P., & Arrigo, D. J. (1999). All Solutions of Standard Symmetric Linear Partial Differential Equations Have Classical Lie Symmetry. Journal of Mathematical Analysis and Applications, 234(1), 109–122. https://doi.org/10.1006/jmaa.1999.6331

Cheng, Z., Wang, T., Bai, Z., Wang, L., Yuan, C., Zhao, Z., & Song, W. (2023). A numerical simulation investigation on low permeability reservoirs air flooding: Oxidation reaction models and factors. Geoenergy Science and Engineering, 223, 211506. https://doi.org/10.1016/j.geoen.2023.211506

Cherniha, R., & Davydovych, V. (2017). Nonlinear Reaction-Diffusion Systems (Vol. 2196). Springer International Publishing. https://doi.org/10.1007/978-3-319-65467-6

Cherniha, R., Davydovych, V., & King, J. R. (2023). The Shigesada–Kawasaki–Teramoto model: Conditional symmetries, exact solutions and their properties. Communications in Nonlinear Science and Numerical Simulation, 124, 107313. https://doi.org/10.1016/j.cnsns.2023.107313

Cherniha, R., & Pliukhin, O. (2013). New conditional symmetries and exact solutions of reaction–diffusion–convection equations with exponential nonlinearities. Journal of Mathematical Analysis and Applications, 403(1), 23–37. https://doi.org/10.1016/j.jmaa.2013.02.010

Cherniha, R., Serov, M., & Pliukhin, O. (2017). Nonlinear Reaction-Diffusion-Convection Equations. Chapman and Hall/CRC. https://doi.org/10.1201/9781315154848

Cowling, M. G. (2023). Decay estimates for matrix coefficients of unitary representations of semisimple Lie groups. Journal of Functional Analysis, 285(8), 110061. https://doi.org/10.1016/j.jfa.2023.110061

Fisher, R. A. (1937). The Wave of Advance of Advantageous Genes . Annals of Eugenics, 7(4), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

Fisher, R. A. (1999). Natural selection (R. A. Fisher, Ed.). Oxford University PressOxford. https://doi.org/10.1093/oso/9780198504405.001.0001

Freire, I. L., & Torrisi, M. (2014). Weak Equivalence Transformations for a Class of Models in Biomathematics. Abstract and Applied Analysis, 2014, 1–9. https://doi.org/10.1155/2014/546083

Hampsey, M., van Goor, P., Banavar, R., & Mahony, R. (2024). Exploiting Equivariance in the Design of Tracking Controllers for Euler-Poincare Systems on Matrix Lie Groups. IFAC-PapersOnLine, 58(6), 333–338. https://doi.org/10.1016/j.ifacol.2024.08.303

He, W., & Richter, O. (2018). Modelling Large Scale Invasion of Aedes aegypti and Aedes albopictus Mosquitoes. Advances in Pure Mathematics, 08(03), 245–265. https://doi.org/10.4236/apm.2018.83013

Lim, N., & Privault, N. (2016). Analytic bond pricing for short rate dynamics evolving on matrix Lie groups. Quantitative Finance, 16(1), 119–129. https://doi.org/10.1080/14697688.2014.990497

Maidana, N. A., & Yang, H. M. (2008). Describing the geographic spread of dengue disease by traveling waves. Mathematical Biosciences, 215(1), 64–77. https://doi.org/10.1016/j.mbs.2008.05.008

Olver, P. J. (1986). Applications of Lie Groups to Differential Equations (Vol. 107). Springer New York. https://doi.org/10.1007/978-1-4684-0274-2

Orhan, Ö., Torrisi, M., & Tracinà, R. (2019). Group methods applied to a reaction-diffusion system generalizing Proteus Mirabilis models. Communications in Nonlinear Science and Numerical Simulation, 70, 223–233. https://doi.org/10.1016/j.cnsns.2018.10.013

Rosen, G. (1976). The mathematical theory of diffusion and reaction in permeable catalysts: Questions of uniqueness, stability, and transient behavior. Bulletin of Mathematical Biology, 38(1), 95–96. https://doi.org/10.1016/S0092-8240(76)80048-1

Sánchez, R., Grau, R., & Morgado, E. (2006). A novel Lie algebra of the genetic code over the Galois field of four DNA bases. Mathematical Biosciences, 202(1), 156–174. https://doi.org/10.1016/j.mbs.2006.03.017

Torrisi, M., & Traciná, R. (2021). Lie Symmetries and Solutions of Reaction Diffusion Systems Arising in Biomathematics. Symmetry, 13(8), 1530. https://doi.org/10.3390/sym13081530

Zhang, E., & Noakes, L. (2020). Riemannian cubics in quadratic matrix Lie groups. Applied Mathematics and Computation, 375, 125082. https://doi.org/10.1016/j.amc.2020.125082

Zhang, Z.-Y., Zhang, H., Liu, Y., Li, J.-Y., & Liu, C.-B. (2023). Generalized conditional symmetry enhanced physics-informed neural network and application to the forward and inverse problems of nonlinear diffusion equations. Chaos, Solitons & Fractals, 168, 113169. https://doi.org/10.1016/j.chaos.2023.113169

Published

2025-07-03

How to Cite

Formulasi Infinitesimal Generators Grup Lie Satu Parameter dari Transformasi Translasi dan Scaling. (2025). Leibniz: Jurnal Matematika, 5(02), 1-10. https://doi.org/10.59632/leibniz.v5i02.496