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Abstract: Hypertension in the elderly poses complex classification challenges,
characterized by noisy categorical features in health survey datasets. This study focuses on
using XGBoost and CatBoost algorithms to overcome barriers when classifying
hypertension in the elderly (= 60 years) using IFLS 5 data. Unlike standard methods that
focus on accuracy, this evaluation emphasizes the recall metric to reduce false negative
errors, which is crucial for ensuring safety in medical screening. After carefully tuning the
hyperparameters using GridSearchCV and 5-fold cross-validation on 2,774 participants,
the models revealed clear algorithmic trade-offs. CatBoost demonstrated superior
generalization stability and achieved the highest accuracy (66.49%), while XGBoost
exhibited significant superiority in sensitivity (vecall of 80.18%) by effectively applying
regularization to detect minority class signals. Evaluating feature significance using the
information gain and prediction values change metrics verified that biological indicators,
particularly diabetes and BMI, were the main predictors compared to demographic
variables. In summary, CatBoost is reliable, but XGBoost is better suited for building
clinical decision support systems where the priority is detecting sensitivity.
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Abstrak: Hipertensi pada lansia menimbulkan tantangan klasifikasi yang kompleks,
ditandai dengan fitur kategorikal yang berisik dalam dataset survei kesehatan. Penelitian ini
berfokus pada penggunaan algoritma XGBoost dan CatBoost untuk mengatasi hambatan
dalam mengklasifikasikan hipertensi pada lansia (= 60 tahun) menggunakan data IFLS 5.
Berbeda dengan metode standar yang berfokus pada akurasi, evaluasi ini menekankan
metrik Recall untuk mengurangi kesalahan False Negative, yang sangat penting untuk
memastikan keamanan dalam skrining medis. Melalui penyesuaian hyperparameter yang
teliti menggunakan GridSearchCV dan validasi silang 5-fold pada 2.774 peserta, model-
model tersebut menunjukkan kompromi algoritmik yang jelas. CatBoost menonjol dalam
stabilitas generalisasi dengan akurasi tertinggi (66,49%), sementara XGBoost menunjukkan
keunggulan yang signifikan dalam sensitivitas (Recall 80,18%) dengan menerapkan
regularisasi secara terampil untuk mendeteksi sinyal kelas minoritas. Evaluasi signifikansi
fitur menggunakan metrik Information Gain dan PredictionValuesChange memverifikasi
bahwa indikator biologis, terutama diabetes dan BMI, merupakan prediktor utama
dibandingkan dengan variabel demografis. Secara ringkas, meskipun CatBoost menawarkan
keandalan, XGBoost lebih cocok untuk membangun sistem dukungan keputusan klinis di
mana prioritas deteksi sensitivitas sangat penting.
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INTRODUCTION

Global demographic changes have made the elderly the fastest growing segment of the
population, including in Indonesia. This aging population directly contributes to an increase in
chronic diseases, especially hypertension. According to the Nasional Riset Kesehatan Dasar
(Riskesdas) report, hypertension prevalence among individuals aged 60 years and older is
significantly high, exceeding 50% (Kementerian Kesehatan RI, 2019). This alarming trend is
further reinforced by an analysis of Indonesian Family Life Survey (IFLS) data identifying older
adults as the most vulnerable demographic group to hypertension in Indonesia (Siagian, 2022).

Hypertension is clinically categorized as a "silent killer" because it does not exhibit
symptoms in the early stages. Therefore, effective early detection mechanisms are necessary to
prevent fatal complications, such as stroke and heart failure (World Health Organization, 2021).
However, large-scale early screening that relies on manual medical diagnosis is resource-
intensive and prone to human error. Therefore, developing an automatic classification model
based on risk factors is mathematically necessary to efficiently and accurately diagnose and
detect hypertension, especially in environments with limited resources (Chowdhury et al., 2022).

Significant computational challenges often arise when developing reliable classification
models for health survey data, such as the Indonesian Family Life Survey (IFLS). High
dimensionality, noise, and the dominance of categorical features representing socioeconomic
and lifestyle factors are typical characteristics of medical data. These variables often interact
with biological indicators in complex nonlinear ways, making them difficult to model effectively
using traditional parametric statistics, such as logistic regression, due to their sensitivity to
multicollinearity and strict assumptions about linearity (Uddin et al., 2019; Kurniawan et al.,
2023). Therefore, a nonparametric approach that can analyze complex patterns directly from the
data without relying on rigid distribution assumptions is needed to address this structural
complexity and drive a strategic shift toward machine learning (ML) techniques. A more
adaptive approach with Machine Learning Algorithms is strongly supported by a literature
review showing that decision tree-based algorithms and their development through Ensemble
Learning can produce better predictions on diverse medical data (Sarkar, 2020).

Ensemble Learning algorithms have emerged as the leading solution for structured
tabular data. In this field, their ability to optimize classification evaluation results has made
Gradient Boosting decision trees highly desirable. Extreme Gradient Boosting (XGBoost) is
widely used due to its application of second-order Taylor expansion for objective function
approximation and advanced regularization (L; and L) in preventing overfitting, making it
highly efficient for sparse data (Chen & Guestrin, 2016). On the other hand, Categorical
Boosting (CatBoost) offers uniqueness in handling categorical features through Ordered Target
Statistics and Oblivious Trees as advantages, which are designed to reduce prediction shifts and
overfitting often caused by standard target encoding (Prokhorenkova et al., 2018; Hancock &
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Khoshgoftaar, 2020). The use of these two Ensemble Learning algorithms is crucial for
observing how classification results with optimal hyperparameter tuning can achieve better
convergence on geriatric survey data.

Although boosting algorithms are popular, existing literature on disease classification
often ignores cost-specific sensitivity in medical diagnosis. Previous studies have explored
algorithms such as Support Vector Machine and Naive Bayes for classifying hypertension
(Lathifah & Pratiwi, 2022). However, these studies focused on maximizing overall accuracy or
the area under the curve (AUC) (Handayani et al., 2018; Islam et al., 2023). This approach has
created a significant research gap because, in clinical settings, minimizing false negatives (type
IT errors) is far more critical than maximizing overall accuracy. Models with high accuracy are
problematic for medical screening if they fail to detect positive cases because missed
hypertensive patients can lead to treatment failure and serious health consequences (Hossin &
Sulaiman, 2015). Recent studies emphasize that evaluation metrics must align with clinical
objectives. However, the direct comparison of XGBoost and CatBoost optimized for recall
(sensitivity) on Indonesian elderly data remains limited (Hicks et al., 2022).

This study aimed to fill this gap by analyzing the application of XGBoost and CatBoost
algorithms to classify hypertension in the elderly using IFLS 5 data. The study also aimed to
determine which algorithm is superior at grouping hypertension cases in elderly individuals.
This study's main contribution lies in its methodological evaluation of how different boosting
optimization schemes perform under the constraint of maximizing recall. Specifically, it
compares XGBoost's regular objective function with CatBoost's ordered boosting. Additionally,
feature importance analysis based on the gain metric for XGBoost and the prediction values
change approach for CatBoost was used to interpret the mathematical weights of biological and
demographic predictors. Prioritizing sensitivity (recall) over accuracy provides a computational
perspective on developing safer, more effective, and systematic clinical decision support
systems.

RESEARCH METHODS

The data used in this study were obtained from the Indonesian Family Life Survey
(IFLS) Wave 5. This large-scale, longitudinal survey examined the socioeconomic and health
dynamics of a population representing 83% of Indonesia's population. It was conducted from
2014 to 2015 (Strauss et al., 2016). The research sample focused on elderly respondents (= 60
years) and the selected variables were based strictly on Joint National Committee 8 (JNC 8)
clinical guidelines and the latest population studies on geriatric hypertension. The dependent
variable (Y) is hypertension status (0: normal; 1: hypertension), which was determined based on
systolic blood pressure = 140 mmHg and diastolic blood pressure = 90 mmHg (James et al.,
2014). The independent variable (X) consists of ten predictors designed to comprehensively
cover hypertension risk factors, especially among the elderly. These factors include
demographic aspects (age, gender, and education); biometric factors (BMI); lifestyle factors
(smoking and sleep quality); and clinical history factors (diabetes, cholesterol, and heart attack).
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These variables were selected based on the availability of IFLS 5 longitudinal data, their
alignment with medical guidelines, and their ability to capture the multifactorial nature of
hypertension and address complexities often overlooked in simpler models (Kurniawan et al.,
2023).

Table 1. Research Variables Description

Variables Information Type
. Target Variable .
Y Hypertension (0: Normal, 1: Hypertension) Categorical
X BMI Body Mass Index Numeric
X, Age Individual age (Year) Numeric
X Sex Individual gender (0: Female, 1: Male)  Categorical
Employment status .
X, Employment_Status (0: Not working, 1: Working) Categorical
Highest level of education
(0: No schooling, 1: Primary school
Xs Education_Level equwalent, 2: Junior high school Categorical
- equivalent,
3: Senior high school equivalent, 4:
Higher education)
X Smoking_Status Smoking Status (0: No, 1: Smoker) Categorical
. Sleep Quality (0: Insufficient, 1: .
X; Sleep Quality Adequate) Categorical
History of Cardiovascular
Xg Heart_Attack Comorbidities Categorical
(0: Normal, 1: HeartAttack)
. History of Metabolic Comorbidities .
X, Diabetes (0: Normal, 1: Diabetes) Categorical
X1 High Cholesterol History of Metabolic Comorbidities Categorical

(0: Normal, 1: HighCholesterol)

Data Source: RAND IFLS Wave 5

The stages of data analysis in this study were systematically carried out in four main
stages: (1) data preprocessing, including cleaning the data and handling missing values to
maintain the statistical distribution, (2) splitting the data for training and testing with an 80:20
ratio to reduce bias and evaluate generalization, (3) training the model with hyperparameter
optimization and cross-validation, and (4) interpreting the results of applying classification
algorithms (XGBoost and CatBoost) and feature importance extraction. The 80:20 data split was
chosen based on the Pareto Principle and empirical evidence showing that allocating 80% of the
data for training provides algorithms with sufficient variance to learn complex non-linear
patterns, while the remaining 20% ensures a statistically significant sample size for confusion
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matrix validation, thereby minimizing the variance in performance estimates (Gholamy et al.,
2018; Nguyen et al., 2021).

The classification model in this study uses two gradient boosting frameworks. The first
is Extreme Gradient Boosting (XGBoost). XGBoost is an extension of Gradient Boosting
Machine (GBM) that optimizes the objective function through second-order Taylor expansion
based on the principle of additive learning mathematically, which provides faster convergence
compared to traditional GBM that only uses first-order derivatives (Friedman, 2001). If ¥; ©
represents the prediction at iteration t, then the objective function to be maximized is:

n
£0 2 3 [0 949) + i) + 3 )] + 0 )

i=1
Where g; and h; are the first and second gradients of the loss function. The theoretical

advantage of XGBoost lies in the regularisation component Q(f;), which controls the
complexity of the model to prevent overfitting.

Q(f) = VT+%/1IIW|I2 2

Where T is the number of leaves and w is the leaf weight. This L, and L, regularization
makes XGBoost highly robust against noise in medical data as a prevention, such as IFLS 5 data
(Chen & Guestrin, 2016). In the context of degenerative disease detection, this ability is crucial
to minimize false negatives, making it safer to use as a screening tool and making the XGBoost
algorithm a viable choice in this study.

The second algorithm is Categorical Boosting (CatBoost). CatBoost addresses the target
leakage problem in conventional boosting algorithms, which are commonly found in survey
data, by using the Ordered Target Statistics method. Rather than using one-hot encoding, which
simple algorithms often use to increase data dimension (sparsity) and which often causes target
leakage (prediction bias), CatBoost converts the x; category into a numerical value based on the
expected target y.

o Tl ]y +a-p
T Il ] +a

Here, P is the prior value, which is usually the target mean in the dataset, and a is the

)

prior weight. This equation ensures that the encoding of the current sample depends solely on
the observed history, thereby eliminating the bias that occurs when data is used to calculate
statistics (Prokhorenkova et al., 2018). This makes CatBoost highly efficient for datasets such
as [FLS that are dominated by categorical variables or questionnaires (Hancock & Khoshgoftaar,
2020).

To optimise model performance, hyperparameter tuning was used with GridSearchCV,
a method that works by defining a grid of hyperparameter values to be tested, then training the
model for each combination using cross-validation (CV) (Pedregosa et al., 2011). Model
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validation is performed repeatedly to assess model generalisation, avoid overfitting on the data,
and thus reduce variance bias (k = 5) (Hastie et al., 2009).
A feature importance analysis was performed after model training to interpret the logic

behind the classification decisions. Different metric definitions were used in this study, along

with optimization scheme adjustments in each algorithm, to strictly measure the contribution of

each predictor.
1.

For the XGBoost algorithm, feature importance was evaluated using the Gain
metric, which represents the average increase in accuracy or decrease in
objective function generated by a particular feature across the decision tree.
Features with the highest Gain values are considered most significant in
distinguishing between hypertensive and non-hypertensive classes (Chen &
Guestrin, 2016). Mathematically, the difference in structural values after
separation with a penalty in the form of a regularization term y, is the gain
calculation for a specific separating node j, using feature k.
2 2 2
Gainz1 d? + G _ (Gt G) -y “4)
2|H,+A Hp+A Hp+Hp+2

It can be seen that G and H represent the sum of the first- and second-order
derivatives (gradient and Hessian, respectively) of the loss function for the left
(L) and right (R) child nodes, and that the L, regularization parameter is
represented by the symbol A. Features that are more important in minimizing
classification error are indicated by a higher total increase.

Meanwhile, in CatBoost, feature importance is determined using the
PredictionValuesChange approach, which assesses the average change in model
prediction values when feature values are altered. This approach has proven to
be very useful for evaluating the contribution of categorical features in a boosted
tree framework (Hancock & Khoshgoftaar, 2020). Unlike metrics, which are
based solely on the frequency of splits, this approach considers the magnitude
of the impact on leaf values. This impact is calculated by summing the weighted
variance of the leaf values (v) for each split involving that feature.

2 2
Importancer = (01(171 - vavg) +C; (Uz - vavg) ) 5)
trees,leaves

¢4 and ¢, represent the instance weights in the left and right leaves, respectively,
and v; and v, represent the leaf values. v, represents the weighted average
of the leaf values. This method provides a powerful measure of feature influence
and is particularly effective for models dealing with categorical data.
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Evaluation metrics used in classification typically include accuracy, sensitivity or recall,
specificity, precision, and F1 score. The main evaluation metric used in this study is Recall
(Sensitivity), which is defined as the proportion of correct positive predictions and minimizing
false negatives is critical in medical screening applications (Hicks et al., 2022).

p TP+ TN 100%
= X
CCUraY = TP Y TN + FP + FN 0 (6)
Sensitivity (Recall) = L X 100% )
y " TP +FN 0
Precision = L X 100% ®)
" TP+ FP 0
2 X (Precision X Recal)TP + TN ®)
F1 — Score = — X 100%
Precision + Recall
©)

TN
Specificity = m X 100%

To ensure that the performance differences between XGBoost and CatBoost were
statistically significant and not due to random data partitioning, 95% Confidence Interval (CI)
were calculated for each metric. Based on the variance observed at k = 5 cross validation folds,
the CI calculation used the following formula:

S
Cl=x+t,_ —
I tn 1,a/2\/E (10)

Where X is the average score, s is the standard deviation across folds, and k is the number
of folds. While t,_1 4/, () is the critical value for the 95% confidence level (Z = 1.96). This
statistical validation is important because it assesses model stability and generalization error,
providing a robust measure of reliability beyond single-point estimates (Raschka, 2020; Berrar,
2019).

Then, the area under the ROC curve (AUC) was used to evaluate the model's ability to
discriminate at various thresholds (Fawcett, 2006).

Sensitivity + Specificit
_ y + Spectficity 1 00%

AUC
2 (11)
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RESULT AND DISCUSSION
RESULT

From the large amount and variety of data scattered throughout IFLS 5, relevant data
was collected and combined as dependent and independent variables for the study using the
primary key column, namely pidlink. The independent variables for this study were obtained
from several questionnaire books in IFLS wave 5, such as Book US for all aspects related to
anthropometrics; Books 3A and 3B for demographic, socioeconomic, and medical history
information.

The accuracy of the classification results is highly dependent on the quality of the input
data. Given that the data from the Indonesian Family Life Survey (IFLS 5) is complex and full
of disturbances, pre-processing steps are very important. This stage involves cleaning the data
to remove extreme values and handling missing data through appropriate statistical imputation
techniques, such as mode for categorical variables and median for numeric variables. This
screening process yielded a sample of 2,774 elderly individuals for analysis, comprising 1,666
elderly individuals with hypertension and 1,108 elderly individuals with normal status. These
results show that the cleaned data has a 60:40 ratio for the target variable. In the real world, a
60:40 ratio for medical data is within the tolerance threshold for tree-based algorithms, such as
XGBoost and CatBoost, without requiring heavy synthetic sampling.

Distribution of Hypertension
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Figure 1. Distribution of Elderly Hypertension Data

During the model training phase, data processing was not performed using standard
settings. Rather, it was done through careful hyperparameter tuning using grid search with five-
fold cross-validation to find the best parameter configuration. The details of the optimal
hyperparameter configuration for hypertension classification in the elderly are provided below.
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Table 2. Best Hyperparameter of Machine Learning Approach (GridSearchCV)

Ensemble Boosting Algorithm Value
colsample bytree 0.9
learning_rate 0.01
XGBoost max_depth 3
n_estimators 200
subsample 0.9
depth 4
iterations 100
CatBoost
12 leaf reg 5
learning_rate 0.05

The optimization process produced a configuration with a relatively shallow tree
structure, a conservative learning rate, stochastic subsampling, and 200 estimators. This shows
that XGBoost requires strong regularization to prevent overfitting on noisy IFLS data. In
contrast, CatBoost achieved optimal performance with a slightly deeper structure and higher
learning rate over 100 iterations. A substantial L, regularization term was selected, confirming
the algorithm's internal mechanism for controlling model complexity when handling categorical

features.
Table 3. Classification Performance Metrics (Mean + 95% CI)
Ensemble Boosting - ROC -
Algorithm Accuracy Precision Recall F1-Score AUC
0.6595 0.6796 0.8018 0.7357
XGBoost [61.80 — [63.32 — [75.68 — [69.86 —  0.7138
69.73%] 72.71%] 84.47%] 77.20%]
0.6649 0.6994 0.7591 0.7281
CatBoost [62.34 — [65.04 — [70.93 — [68.94—  0.7196
70.45%)] 74.50%)] 80.49%] 76.54%]

Table 3 presents a comparison of model performance in classifying hypertension in the
elderly in the optimized IFLS 5 test data. Although CatBoost shows slightly better stability in
overall accuracy (0.6649) and Area Under the Curve (AUC: 0.7196), XGBoost shows a clear
advantage in the main metric of concern, namely Recall of 0.8018.

Leibniz: Jurnal Matematika | Volume 6, Nomor 01, Januari 2026 | E-ISSN 2775-2356

9



Leibniz: Jurnal Matematika

Januari 2026

Vol. 6 No. 01 Hal. 01-14

e-ISSN: 2775-2356
https://ejurnal.unisap.ac.id/leibniz/index

Receiver Operating Characteristic (ROC) Curve Comparison (Tuned Models without SMOTE)
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Figure 2. XBoost & CatBoost ROC Curve

The 95% Confidence Interval (CI) is used as a statistical significance assessment of the
performance difference between two classification algorithms. As shown in Table 3, XGBoost
significantly outperforms CatBoost, whose Recall only reaches 0.7591. Although there is a slight
overlap in the confidence interval, the distribution of XGBoost sensitivity clearly shifts towards
the upper limit.

This difference of approximately 4.3% in Recall is clinically and practically significant.
In the context of screening a large elderly population, a 4.3% increase in sensitivity (recall)
means that for every 1,000 positive hypertension cases, XGBoost successfully identifies
approximately 43 more patients than CatBoost. These are patients who should have been
classified as “healthy” (False Negatives) and missed the opportunity for early intervention.
Therefore, XGBoost provides a safer and more effective solution for medical screening purposes
where minimizing false negatives is crucial, even though CatBoost has a marginal advantage in
overall accuracy.

To support the classification results, feature importance analysis was performed to
understand the medical logic behind the model predictions, calculated using the Gain metric for
XGBoost and PredictionValuesChange for CatBoost. The results are visualized in Figure 3,
which shows strong consensus between the two algorithms regarding the most influential
predictors.
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Figure 3. XBoost & CatBoost Features Importance Graph

The findings show consistency in both algorithms that biological risk factors dominate
the classification hierarchy. 'Diabetes' emerged as the single most important predictor in both
models (XGBoost = 0.63; CatBoost = 50.21), followed by ‘BMI’ (XGBoost = 0.086; CatBoost
~ 22.23) as the second-ranked predictor, despite a significant difference. Interestingly,
demographic variables such as ‘Gender’ showed zero contribution in both algorithms, meaning
that gender is not a discriminating factor for hypertension risk among the Indonesian elderly
population in this dataset.

DISCUSSION

The findings if this research highlights a clear trade-off in computation between
CatBoost's generalization stability and XGBoost's sensitivity. Although CatBoost achieves
slightly better accuracy and AUC, XGBoost excels in recall (80.18%), a key metric in this study
aimed at reducing false negatives. This advantage stems from XGBoost's objective function,
which includes L, (lasso) and L, (ridge) regularization terms (Q(f t)). These terms penalize
model complexity, preventing decision trees from overfitting the majority class (normal) and
enabling the algorithm to detect finer patterns in the minority class (hypertension) (Ogunleye &
Wang, 2020). Conversely, while the Ordered Boosting CatBoost approach is effective in
minimizing prediction shifts and smoothing decision boundaries for overall accuracy (Hancock
& Khoshgoftaar, 2020), it proved too cautious for this dataset. This resulted in more missed
positive cases compared to XGBoost.

Hyperparameter tuning provides additional details about the level of model complexity
required for the IFLS 5 dataset. The optimal XGBoost settings are shallow trees (max_depth =
3) combined with a moderate learning rate of 0.01. These settings suggest that the data structure
is highly nonlinear but noisy. Shallow trees act as "weak learners" with significant bias and
minimal variance; however, when gradually improved with a slow learning rate, they can correct
errors without capturing the random noise commonly found in survey data (Sagi & Rokach,
2018). This contradicts the assumption that deeper trees are essential for complex medical data.
Our observations align with those of Zhang et al. (2020), who recommend prioritizing

Leibniz: Jurnal Matematika | Volume 6, Nomor 01, Januari 2026 | E-ISSN 2775-2356

11



Leibniz: Jurnal Matematika

Januari 2026

Vol. 6 No.01 Hal. 01-14

e-ISSN: 2775-2356
https://ejurnal.unisap.ac.id/leibniz/index

controlling tree depth over expanding ensemble size for tabular health data to ensure model
reliability.

From a statistical perspective, the approximately 4.3% difference in recall is supported
by the non-overlapping distribution at the upper end of the detailed 95% confidence interval in
the results. In practical terms, this difference is significant. Unlike previous hypertension
prediction studies, such as that of Handayani et al. (2018), which emphasized overall accuracy
of up to 78%, our study argues that a model with 66% accuracy and 80% recall has greater
clinical value for screening purposes. High-accuracy models that miss positive cases create a
dangerous illusion of safety for patients. By prioritizing recall optimization, XGBoost identifies
more at-risk elderly individuals who require treatment, thus reinforcing its role as an effective
initial screening method (Hicks et al., 2022).

In terms of feature evaluation, the strong influence of "Diabetes" and "BMI" on the
"Information Gain" (XGBoost) and "Prediction Values Change" (CatBoost) measures indicates
that continuous variables with significant variance play the largest role in reducing entropy at
the split point. Notably, "Gender" (sex) has no impact on either model. This finding challenges
some traditional medical perspectives but aligns with computational logic. Categorical features
with limited options generally yield lower information gain than continuous variables in gradient
boosting systems unless the target is significantly impacted by that category (Lundberg et al.,
2020). Therefore, for Indonesian older adults in the IFLS 5 sample, biological indicators (e.g.,
metabolic health) are much stronger predictors than demographic factors.

CONCLUSION

This study concludes that, although CatBoost offers the highest overall accuracy and
better generalization stability, XGBoost is the best computational option for screening
hypertension in elderly individuals due to its significantly higher sensitivity (recall: 80.18%).
By using a regularized objective function to reduce false negatives, XGBoost provides a more
reliable clinical decision support system than CatBoost, which is more cautious. Furthermore,
feature analysis shows that physiological indicators, particularly diabetes and BMI, play a major
role in influencing hypertension risk, far exceeding demographic elements. However, this study
is limited by its use of cross-sectional IFLS 5 data, which provides only a snapshot of health
conditions at a single point in time, hindering the modeling of blood pressure changes over time.
Additionally, the omission of genetic biomarkers limits the biological completeness of the
prediction model. Future studies should prioritize applying Deep Learning models to
longitudinal datasets to track disease progression over time. Additionally, using hybrid
hyperparameter tuning methods, such as Bayesian optimization or evolutionary algorithms, is
recommended to surpass the existing grid search standard and improve algorithm efficiency.
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