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Abstract: Hypertension in the elderly poses complex classification challenges, 

characterized by noisy categorical features in health survey datasets. This study focuses on 

using XGBoost and CatBoost algorithms to overcome barriers when classifying 

hypertension in the elderly (≥ 60 years) using IFLS 5 data. Unlike standard methods that 

focus on accuracy, this evaluation emphasizes the recall metric to reduce false negative 

errors, which is crucial for ensuring safety in medical screening. After carefully tuning the 

hyperparameters using GridSearchCV and 5-fold cross-validation on 2,774 participants, 

the models revealed clear algorithmic trade-offs. CatBoost demonstrated superior 

generalization stability and achieved the highest accuracy (66.49%), while XGBoost 

exhibited significant superiority in sensitivity (recall of 80.18%) by effectively applying 

regularization to detect minority class signals. Evaluating feature significance using the 

information gain and prediction values change metrics verified that biological indicators, 

particularly diabetes and BMI, were the main predictors compared to demographic 

variables. In summary, CatBoost is reliable, but XGBoost is better suited for building 

clinical decision support systems where the priority is detecting sensitivity. 
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Abstrak: Hipertensi pada lansia menimbulkan tantangan klasifikasi yang kompleks, 

ditandai dengan fitur kategorikal yang berisik dalam dataset survei kesehatan. Penelitian ini 

berfokus pada penggunaan algoritma XGBoost dan CatBoost untuk mengatasi hambatan 

dalam mengklasifikasikan hipertensi pada lansia (≥ 60 tahun) menggunakan data IFLS 5. 

Berbeda dengan metode standar yang berfokus pada akurasi, evaluasi ini menekankan 

metrik Recall untuk mengurangi kesalahan False Negative, yang sangat penting untuk 

memastikan keamanan dalam skrining medis. Melalui penyesuaian hyperparameter yang 

teliti menggunakan GridSearchCV dan validasi silang 5-fold pada 2.774 peserta, model-

model tersebut menunjukkan kompromi algoritmik yang jelas. CatBoost menonjol dalam 

stabilitas generalisasi dengan akurasi tertinggi (66,49%), sementara XGBoost menunjukkan 

keunggulan yang signifikan dalam sensitivitas (Recall 80,18%) dengan menerapkan 

regularisasi secara terampil untuk mendeteksi sinyal kelas minoritas. Evaluasi signifikansi 

fitur menggunakan metrik Information Gain dan PredictionValuesChange memverifikasi 

bahwa indikator biologis, terutama diabetes dan BMI, merupakan prediktor utama 

dibandingkan dengan variabel demografis. Secara ringkas, meskipun CatBoost menawarkan 

keandalan, XGBoost lebih cocok untuk membangun sistem dukungan keputusan klinis di 

mana prioritas deteksi sensitivitas sangat penting. 
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INTRODUCTION 

Global demographic changes have made the elderly the fastest growing segment of the 

population, including in Indonesia. This aging population directly contributes to an increase in 

chronic diseases, especially hypertension. According to the Nasional Riset Kesehatan Dasar 

(Riskesdas) report, hypertension prevalence among individuals aged 60 years and older is 

significantly high, exceeding 50% (Kementerian Kesehatan RI, 2019).  This alarming trend is 

further reinforced by an analysis of Indonesian Family Life Survey (IFLS) data identifying older 

adults as the most vulnerable demographic group to hypertension in Indonesia (Siagian, 2022).  

Hypertension is clinically categorized as a "silent killer" because it does not exhibit 

symptoms in the early stages. Therefore, effective early detection mechanisms are necessary to 

prevent fatal complications, such as stroke and heart failure (World Health Organization, 2021). 

However, large-scale early screening that relies on manual medical diagnosis is resource-

intensive and prone to human error. Therefore, developing an automatic classification model 

based on risk factors is mathematically necessary to efficiently and accurately diagnose and 

detect hypertension, especially in environments with limited resources (Chowdhury et al., 2022). 

Significant computational challenges often arise when developing reliable classification 

models for health survey data, such as the Indonesian Family Life Survey (IFLS). High 

dimensionality, noise, and the dominance of categorical features representing socioeconomic 

and lifestyle factors are typical characteristics of medical data. These variables often interact 

with biological indicators in complex nonlinear ways, making them difficult to model effectively 

using traditional parametric statistics, such as logistic regression, due to their sensitivity to 

multicollinearity and strict assumptions about linearity (Uddin et al., 2019; Kurniawan et al., 

2023). Therefore, a nonparametric approach that can analyze complex patterns directly from the 

data without relying on rigid distribution assumptions is needed to address this structural 

complexity and drive a strategic shift toward machine learning (ML) techniques. A more 

adaptive approach with Machine Learning Algorithms is strongly supported by a literature 

review showing that decision tree-based algorithms and their development through Ensemble 

Learning can produce better predictions on diverse medical data (Sarkar, 2020). 

Ensemble Learning algorithms have emerged as the leading solution for structured 

tabular data. In this field, their ability to optimize classification evaluation results has made 

Gradient Boosting decision trees highly desirable. Extreme Gradient Boosting (XGBoost) is 

widely used due to its application of second-order Taylor expansion for objective function 

approximation and advanced regularization (𝐿1 and 𝐿2) in preventing overfitting, making it 

highly efficient for sparse data (Chen & Guestrin, 2016). On the other hand, Categorical 

Boosting (CatBoost) offers uniqueness in handling categorical features through Ordered Target 

Statistics and Oblivious Trees as advantages, which are designed to reduce prediction shifts and 

overfitting often caused by standard target encoding (Prokhorenkova et al., 2018; Hancock & 
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Khoshgoftaar, 2020). The use of these two Ensemble Learning algorithms is crucial for 

observing how classification results with optimal hyperparameter tuning can achieve better 

convergence on geriatric survey data. 

Although boosting algorithms are popular, existing literature on disease classification 

often ignores cost-specific sensitivity in medical diagnosis. Previous studies have explored 

algorithms such as Support Vector Machine and Naive Bayes for classifying hypertension 

(Lathifah & Pratiwi, 2022). However, these studies focused on maximizing overall accuracy or 

the area under the curve (AUC) (Handayani et al., 2018; Islam et al., 2023). This approach has 

created a significant research gap because, in clinical settings, minimizing false negatives (type 

II errors) is far more critical than maximizing overall accuracy. Models with high accuracy are 

problematic for medical screening if they fail to detect positive cases because missed 

hypertensive patients can lead to treatment failure and serious health consequences (Hossin & 

Sulaiman, 2015). Recent studies emphasize that evaluation metrics must align with clinical 

objectives. However, the direct comparison of XGBoost and CatBoost optimized for recall 

(sensitivity) on Indonesian elderly data remains limited (Hicks et al., 2022). 

This study aimed to fill this gap by analyzing the application of XGBoost and CatBoost 

algorithms to classify hypertension in the elderly using IFLS 5 data. The study also aimed to 

determine which algorithm is superior at grouping hypertension cases in elderly individuals. 

This study's main contribution lies in its methodological evaluation of how different boosting 

optimization schemes perform under the constraint of maximizing recall. Specifically, it 

compares XGBoost's regular objective function with CatBoost's ordered boosting. Additionally, 

feature importance analysis based on the gain metric for XGBoost and the prediction values 

change approach for CatBoost was used to interpret the mathematical weights of biological and 

demographic predictors. Prioritizing sensitivity (recall) over accuracy provides a computational 

perspective on developing safer, more effective, and systematic clinical decision support 

systems. 

 

RESEARCH METHODS 

The data used in this study were obtained from the Indonesian Family Life Survey 

(IFLS) Wave 5. This large-scale, longitudinal survey examined the socioeconomic and health 

dynamics of a population representing 83% of Indonesia's population. It was conducted from 

2014 to 2015 (Strauss et al., 2016). The research sample focused on elderly respondents (≥ 60 

years) and the selected variables were based strictly on Joint National Committee 8 (JNC 8) 

clinical guidelines and the latest population studies on geriatric hypertension. The dependent 

variable (Y) is hypertension status (0: normal; 1: hypertension), which was determined based on 

systolic blood pressure ≥ 140 mmHg and diastolic blood pressure ≥ 90 mmHg (James et al., 

2014). The independent variable (X) consists of ten predictors designed to comprehensively 

cover hypertension risk factors, especially among the elderly. These factors include 

demographic aspects (age, gender, and education); biometric factors (BMI); lifestyle factors 

(smoking and sleep quality); and clinical history factors (diabetes, cholesterol, and heart attack). 
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These variables were selected based on the availability of IFLS 5 longitudinal data, their 

alignment with medical guidelines, and their ability to capture the multifactorial nature of 

hypertension and address complexities often overlooked in simpler models (Kurniawan et al., 

2023). 

 

Table 1. Research Variables Description 

 Variables Information Type 

𝑌 Hypertension 
Target Variable 

(0: Normal, 1: Hypertension) 
Categorical 

𝑋1 BMI Body Mass Index Numeric 

𝑋2 Age Individual age (Year) Numeric 

𝑋3 Sex Individual gender (0: Female, 1: Male) Categorical 

𝑋4 Employment_Status 
Employment status 

(0: Not working, 1: Working) 
Categorical 

𝑋5 Education_Level 

Highest level of education 

(0: No schooling, 1: Primary school 

equivalent, 2: Junior high school 

equivalent, 

3: Senior high school equivalent, 4: 

Higher education) 

Categorical 

𝑋6 Smoking_Status Smoking Status (0: No, 1: Smoker) Categorical 

𝑋7 Sleep_Quality 
Sleep Quality (0: Insufficient, 1: 

Adequate) 
Categorical 

𝑋8 Heart_Attack 

History of Cardiovascular 

Comorbidities 

(0: Normal, 1: HeartAttack) 

Categorical 

𝑋9 Diabetes 
History of Metabolic Comorbidities 

(0: Normal, 1: Diabetes) 
Categorical 

𝑋10 High_Cholesterol 
History of Metabolic Comorbidities 

(0: Normal, 1: HighCholesterol) 
Categorical 

Data Source: RAND IFLS Wave 5 

 

The stages of data analysis in this study were systematically carried out in four main 

stages: (1) data preprocessing, including cleaning the data and handling missing values to 

maintain the statistical distribution, (2) splitting the data for training and testing with an 80:20 

ratio to reduce bias and evaluate generalization, (3) training the model with hyperparameter 

optimization and cross-validation, and (4) interpreting the results of applying classification 

algorithms (XGBoost and CatBoost) and feature importance extraction. The 80:20 data split was 

chosen based on the Pareto Principle and empirical evidence showing that allocating 80% of the 

data for training provides algorithms with sufficient variance to learn complex non-linear 

patterns, while the remaining 20% ensures a statistically significant sample size for confusion 
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matrix validation, thereby minimizing the variance in performance estimates (Gholamy et al., 

2018; Nguyen et al., 2021). 

The classification model in this study uses two gradient boosting frameworks. The first 

is Extreme Gradient Boosting (XGBoost). XGBoost is an extension of Gradient Boosting 

Machine (GBM) that optimizes the objective function through second-order Taylor expansion 

based on the principle of additive learning mathematically, which provides faster convergence 

compared to traditional GBM that only uses first-order derivatives (Friedman, 2001). If 𝑦̂𝑖
(𝑡)

 

represents the prediction at iteration t, then the objective function to be maximized is: 

ℒ(𝑡) ≈ ∑ [𝑙(𝑦𝑖, 𝑦̂(𝑡−1)) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)

𝑛

𝑖=1

 (1) 

Where 𝑔𝑖 and ℎ𝑖 are the first and second gradients of the loss function. The theoretical 

advantage of XGBoost lies in the regularisation component Ω(𝑓𝑡), which controls the 

complexity of the model to prevent overfitting. 

Ω(𝑓𝑡) = 𝛾Τ +
1

2
𝜆‖𝑤‖2 (2) 

Where Τ is the number of leaves and 𝑤 is the leaf weight. This 𝐿1 and 𝐿2 regularization 

makes XGBoost highly robust against noise in medical data as a prevention, such as IFLS 5 data 

(Chen & Guestrin, 2016). In the context of degenerative disease detection, this ability is crucial 

to minimize false negatives, making it safer to use as a screening tool and making the XGBoost 

algorithm a viable choice in this study. 

The second algorithm is Categorical Boosting (CatBoost). CatBoost addresses the target 

leakage problem in conventional boosting algorithms, which are commonly found in survey 

data, by using the Ordered Target Statistics method. Rather than using one-hot encoding, which 

simple algorithms often use to increase data dimension (sparsity) and which often causes target 

leakage (prediction bias), CatBoost converts the 𝑥𝑘 category into a numerical value based on the 

expected target 𝑦. 

𝑥𝑖
𝑘 =

∑ [𝑥𝑗
𝑘 + 𝑥𝑖

𝑘] ⋅ 𝑦𝑗 + 𝑎 ⋅ 𝑃
𝑝−1
𝑗=1

∑ [𝑥𝑗
𝑘 + 𝑥𝑖

𝑘] + 𝑎
𝑝−1
𝑗=1

 (3) 

Here, P is the prior value, which is usually the target mean in the dataset, and a is the 

prior weight. This equation ensures that the encoding of the current sample depends solely on 

the observed history, thereby eliminating the bias that occurs when data is used to calculate 

statistics (Prokhorenkova et al., 2018). This makes CatBoost highly efficient for datasets such 

as IFLS that are dominated by categorical variables or questionnaires (Hancock & Khoshgoftaar, 

2020). 

To optimise model performance, hyperparameter tuning was used with GridSearchCV, 

a method that works by defining a grid of hyperparameter values to be tested, then training the 

model for each combination using cross-validation (CV) (Pedregosa et al., 2011). Model 
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validation is performed repeatedly to assess model generalisation, avoid overfitting on the data, 

and thus reduce variance bias (𝑘 = 5) (Hastie et al., 2009). 

A feature importance analysis was performed after model training to interpret the logic 

behind the classification decisions. Different metric definitions were used in this study, along 

with optimization scheme adjustments in each algorithm, to strictly measure the contribution of 

each predictor. 

1. For the XGBoost algorithm, feature importance was evaluated using the Gain 

metric, which represents the average increase in accuracy or decrease in 

objective function generated by a particular feature across the decision tree. 

Features with the highest Gain values are considered most significant in 

distinguishing between hypertensive and non-hypertensive classes (Chen & 

Guestrin, 2016). Mathematically, the difference in structural values after 

separation with a penalty in the form of a regularization term 𝛾, is the gain 

calculation for a specific separating node 𝑗, using feature 𝑘. 

𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆
] − 𝛾 (4) 

 

It can be seen that G and H represent the sum of the first- and second-order 

derivatives (gradient and Hessian, respectively) of the loss function for the left 

(L) and right (R) child nodes, and that the 𝐿2 regularization parameter is 

represented by the symbol 𝜆. Features that are more important in minimizing 

classification error are indicated by a higher total increase. 

2. Meanwhile, in CatBoost, feature importance is determined using the 

PredictionValuesChange approach, which assesses the average change in model 

prediction values when feature values are altered. This approach has proven to 

be very useful for evaluating the contribution of categorical features in a boosted 

tree framework (Hancock & Khoshgoftaar, 2020). Unlike metrics, which are 

based solely on the frequency of splits, this approach considers the magnitude 

of the impact on leaf values. This impact is calculated by summing the weighted 

variance of the leaf values (𝑣) for each split involving that feature. 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝐹 = ∑ (𝑐1(𝑣1 − 𝑣𝑎𝑣𝑔)
2

+ 𝑐2(𝑣2 − 𝑣𝑎𝑣𝑔)
2

)

𝑡𝑟𝑒𝑒𝑠,𝑙𝑒𝑎𝑣𝑒𝑠

 (5) 

 

𝑐1 and 𝑐2 represent the instance weights in the left and right leaves, respectively, 

and 𝑣1 and 𝑣2 represent the leaf values. 𝑣𝑎𝑣𝑔 represents the weighted average 

of the leaf values. This method provides a powerful measure of feature influence 

and is particularly effective for models dealing with categorical data. 
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Evaluation metrics used in classification typically include accuracy, sensitivity or recall, 

specificity, precision, and F1 score. The main evaluation metric used in this study is Recall 

(Sensitivity), which is defined as the proportion of correct positive predictions and minimizing 

false negatives is critical in medical screening applications (Hicks et al., 2022). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% 

(6) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

(7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% 

(8) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)𝑇𝑃 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 100% 

(8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% 

(9) 

 To ensure that the performance differences between XGBoost and CatBoost were 

statistically significant and not due to random data partitioning, 95% Confidence Interval (CI) 

were calculated for each metric. Based on the variance observed at 𝑘 = 5 cross validation folds, 

the CI calculation used the following formula: 

 

𝐶𝐼 = 𝑥̅ ± 𝑡𝑛−1,𝛼/2

𝑠

√𝑘
 

(10) 

Where 𝑥̅ is the average score, s is the standard deviation across folds, and k is the number 

of folds. While 𝑡𝑛−1,𝛼/2 (𝑍) is the critical value for the 95% confidence level (𝑍 = 1.96). This 

statistical validation is important because it assesses model stability and generalization error, 

providing a robust measure of reliability beyond single-point estimates (Raschka, 2020; Berrar, 

2019). 

Then, the area under the ROC curve (AUC) was used to evaluate the model's ability to 

discriminate at various thresholds (Fawcett, 2006). 

 

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
× 100% 

(11) 
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RESULT AND DISCUSSION 

RESULT 

From the large amount and variety of data scattered throughout IFLS 5, relevant data 

was collected and combined as dependent and independent variables for the study using the 

primary key column, namely pidlink. The independent variables for this study were obtained 

from several questionnaire books in IFLS wave 5, such as Book US for all aspects related to 

anthropometrics; Books 3A and 3B for demographic, socioeconomic, and medical history 

information. 

The accuracy of the classification results is highly dependent on the quality of the input 

data. Given that the data from the Indonesian Family Life Survey (IFLS 5) is complex and full 

of disturbances, pre-processing steps are very important. This stage involves cleaning the data 

to remove extreme values and handling missing data through appropriate statistical imputation 

techniques, such as mode for categorical variables and median for numeric variables. This 

screening process yielded a sample of 2,774 elderly individuals for analysis, comprising 1,666 

elderly individuals with hypertension and 1,108 elderly individuals with normal status. These 

results show that the cleaned data has a 60:40 ratio for the target variable. In the real world, a 

60:40 ratio for medical data is within the tolerance threshold for tree-based algorithms, such as 

XGBoost and CatBoost, without requiring heavy synthetic sampling. 

 

 
Figure 1. Distribution of Elderly Hypertension Data 

 

During the model training phase, data processing was not performed using standard 

settings. Rather, it was done through careful hyperparameter tuning using grid search with five-

fold cross-validation to find the best parameter configuration. The details of the optimal 

hyperparameter configuration for hypertension classification in the elderly are provided below. 
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Table 2. Best Hyperparameter of Machine Learning Approach (GridSearchCV) 

Ensemble Boosting Algorithm Value 

XGBoost 

colsample_bytree 0.9 

learning_rate 0.01 

max_depth 3 

n_estimators 200 

subsample 0.9 

CatBoost 

depth 4 

iterations 100 

l2_leaf_reg 5 

learning_rate  0.05 

 

The optimization process produced a configuration with a relatively shallow tree 

structure, a conservative learning rate, stochastic subsampling, and 200 estimators. This shows 

that XGBoost requires strong regularization to prevent overfitting on noisy IFLS data. In 

contrast, CatBoost achieved optimal performance with a slightly deeper structure and higher 

learning rate over 100 iterations. A substantial 𝐿2 regularization term was selected, confirming 

the algorithm's internal mechanism for controlling model complexity when handling categorical 

features. 

 

Table 3. Classification Performance Metrics (Mean ± 95% CI) 

Ensemble Boosting 

Algorithm 
Accuracy Precision Recall F1-Score 

ROC - 

AUC 

XGBoost 

0.6595 

[61.80 – 

69.73%] 

0.6796 

[63.32 – 

72.71%] 

0.8018 

[75.68 – 

84.47%] 

0.7357 

[69.86 – 

77.20%] 

0.7138 

CatBoost 

0.6649 

[62.34 – 

70.45%] 

0.6994 

[65.04 – 

74.50%] 

0.7591 

[70.93 – 

80.49%] 

0.7281 

[68.94 – 

76.54%] 

0.7196 

 

Table 3 presents a comparison of model performance in classifying hypertension in the 

elderly in the optimized IFLS 5 test data. Although CatBoost shows slightly better stability in 

overall accuracy (0.6649) and Area Under the Curve (AUC: 0.7196), XGBoost shows a clear 

advantage in the main metric of concern, namely Recall of 0.8018. 
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Figure 2. XBoost & CatBoost ROC Curve 

 

The 95% Confidence Interval (CI) is used as a statistical significance assessment of the 

performance difference between two classification algorithms. As shown in Table 3, XGBoost 

significantly outperforms CatBoost, whose Recall only reaches 0.7591. Although there is a slight 

overlap in the confidence interval, the distribution of XGBoost sensitivity clearly shifts towards 

the upper limit. 

This difference of approximately 4.3% in Recall is clinically and practically significant. 

In the context of screening a large elderly population, a 4.3% increase in sensitivity (recall) 

means that for every 1,000 positive hypertension cases, XGBoost successfully identifies 

approximately 43 more patients than CatBoost. These are patients who should have been 

classified as “healthy” (False Negatives) and missed the opportunity for early intervention. 

Therefore, XGBoost provides a safer and more effective solution for medical screening purposes 

where minimizing false negatives is crucial, even though CatBoost has a marginal advantage in 

overall accuracy. 

To support the classification results, feature importance analysis was performed to 

understand the medical logic behind the model predictions, calculated using the Gain metric for 

XGBoost and PredictionValuesChange for CatBoost. The results are visualized in Figure 3, 

which shows strong consensus between the two algorithms regarding the most influential 

predictors. 
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Figure 3. XBoost & CatBoost Features Importance Graph 

  

 The findings show consistency in both algorithms that biological risk factors dominate 

the classification hierarchy. 'Diabetes' emerged as the single most important predictor in both 

models (XGBoost ≈ 0.63; CatBoost ≈ 50.21), followed by ‘BMI’ (XGBoost ≈ 0.086; CatBoost 

≈ 22.23) as the second-ranked predictor, despite a significant difference. Interestingly, 

demographic variables such as ‘Gender’ showed zero contribution in both algorithms, meaning 

that gender is not a discriminating factor for hypertension risk among the Indonesian elderly 

population in this dataset. 

 

DISCUSSION 

 The findings if this research highlights a clear trade-off in computation between 

CatBoost's generalization stability and XGBoost's sensitivity. Although CatBoost achieves 

slightly better accuracy and AUC, XGBoost excels in recall (80.18%), a key metric in this study 

aimed at reducing false negatives. This advantage stems from XGBoost's objective function, 

which includes 𝐿1 (lasso) and 𝐿2 (ridge) regularization terms (Ω(f_t)). These terms penalize 

model complexity, preventing decision trees from overfitting the majority class (normal) and 

enabling the algorithm to detect finer patterns in the minority class (hypertension) (Ogunleye & 

Wang, 2020). Conversely, while the Ordered Boosting CatBoost approach is effective in 

minimizing prediction shifts and smoothing decision boundaries for overall accuracy (Hancock 

& Khoshgoftaar, 2020), it proved too cautious for this dataset. This resulted in more missed 

positive cases compared to XGBoost. 

 Hyperparameter tuning provides additional details about the level of model complexity 

required for the IFLS 5 dataset. The optimal XGBoost settings are shallow trees (max_depth = 

3) combined with a moderate learning rate of 0.01. These settings suggest that the data structure 

is highly nonlinear but noisy. Shallow trees act as "weak learners" with significant bias and 

minimal variance; however, when gradually improved with a slow learning rate, they can correct 

errors without capturing the random noise commonly found in survey data (Sagi & Rokach, 

2018). This contradicts the assumption that deeper trees are essential for complex medical data. 

Our observations align with those of Zhang et al. (2020), who recommend prioritizing 
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controlling tree depth over expanding ensemble size for tabular health data to ensure model 

reliability. 

 From a statistical perspective, the approximately 4.3% difference in recall is supported 

by the non-overlapping distribution at the upper end of the detailed 95% confidence interval in 

the results. In practical terms, this difference is significant. Unlike previous hypertension 

prediction studies, such as that of Handayani et al. (2018), which emphasized overall accuracy 

of up to 78%, our study argues that a model with 66% accuracy and 80% recall has greater 

clinical value for screening purposes. High-accuracy models that miss positive cases create a 

dangerous illusion of safety for patients. By prioritizing recall optimization, XGBoost identifies 

more at-risk elderly individuals who require treatment, thus reinforcing its role as an effective 

initial screening method (Hicks et al., 2022). 

 In terms of feature evaluation, the strong influence of "Diabetes" and "BMI" on the 

"Information Gain" (XGBoost) and "Prediction Values Change" (CatBoost) measures indicates 

that continuous variables with significant variance play the largest role in reducing entropy at 

the split point. Notably, "Gender" (sex) has no impact on either model. This finding challenges 

some traditional medical perspectives but aligns with computational logic. Categorical features 

with limited options generally yield lower information gain than continuous variables in gradient 

boosting systems unless the target is significantly impacted by that category (Lundberg et al., 

2020). Therefore, for Indonesian older adults in the IFLS 5 sample, biological indicators (e.g., 

metabolic health) are much stronger predictors than demographic factors. 

  

CONCLUSION 

This study concludes that, although CatBoost offers the highest overall accuracy and 

better generalization stability, XGBoost is the best computational option for screening 

hypertension in elderly individuals due to its significantly higher sensitivity (recall: 80.18%). 

By using a regularized objective function to reduce false negatives, XGBoost provides a more 

reliable clinical decision support system than CatBoost, which is more cautious. Furthermore, 

feature analysis shows that physiological indicators, particularly diabetes and BMI, play a major 

role in influencing hypertension risk, far exceeding demographic elements. However, this study 

is limited by its use of cross-sectional IFLS 5 data, which provides only a snapshot of health 

conditions at a single point in time, hindering the modeling of blood pressure changes over time. 

Additionally, the omission of genetic biomarkers limits the biological completeness of the 

prediction model. Future studies should prioritize applying Deep Learning models to 

longitudinal datasets to track disease progression over time. Additionally, using hybrid 

hyperparameter tuning methods, such as Bayesian optimization or evolutionary algorithms, is 

recommended to surpass the existing grid search standard and improve algorithm efficiency. 
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